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MR-DDPM: Unsupervised OCT Denoising
Using Masked Region-Based DDPM
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Abstract—Denoising is a commonly used technique in
medical image preprocessing, particularly in the processing
of optical coherence tomography (OCT) images. Due to the
characteristics of OCT systems and their operational princi-
ples, the acquired images inevitably contain a superposition
of various types of noise, including speckle noise, struc-
tural noise, and random noise, which consequently reduces
the accuracy of subsequent segmentation tasks. Moreover,
medical image processing places a high emphasis on image
details, making it challenging to remove noise without caus-
ing excessive smoothing of the images. In addition, the
difficulty in obtaining ground truth for medical images lim-
its the application of many supervised learning methods.
To address these issues, this article proposes an unsuper-
vised masked region-based denoising diffusion probabilistic
model algorithm. This algorithm employs pixel-level mask-
ing, which not only effectively enhances the removal of
random noise but also enables the model to focus more
on adjacent regions, thereby avoiding excessive alteration
of the original image’s details and edges. Furthermore, the
method leverages information complementarity among data
within the same group, effectively preventing information
loss caused by masking. Experimental results demonstrate
that compared to the baseline, the proposed algorithm increases the CNR to 3.77 with minimal reduction in the structural
similarity index measure (SSIM). In addition, further segmentation experiments confirm the effectiveness of the denoising
algorithm, achieving a 5.5% improvement in segmentation accuracy. This study presents the MR-DDPM algorithm, which
improves the denoising quality of OCT images and consequently enhances segmentation accuracy, without the need for
labeled data. This contribution is valuable to the advancement of medical image processing algorithms.

Index Terms— Denoising, denoising diffusion probabilistic model (DDPM), optical coherence tomography (OCT),
unsupervised.

I. INTRODUCTION

OPTICAL coherence tomography (OCT) [1], [2] is a
technique that utilizes the principle of interferometry

with low-coherence light to obtain high-resolution tissue cross-
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sectional images [3]. As a 3-D imaging modality, OCT has
gained widespread application in medical and biological imag-
ing [4], [5], [6], [7], [8], as well as in clinical diagnostic
support, owing to its noninvasive nature, fast imaging speed,
and high resolution. In particular, in the field of ophthalmology
[9], the images obtained through OCT exhibit a distinct layered
structure and contain rich pathological information, making
it a valuable tool for assisting in the diagnosis of retinal
diseases, glaucoma, and other conditions. However, due to the
use of low-coherence light for image acquisition, combined
with the inherent characteristics of its structure, OCT images
inevitably suffer from various types of noise, including speckle
noise, structural noise, and random noise [10]. Severe noise
can significantly affect the accuracy of downstream tasks
such as image segmentation and feature recognition [11].
Consequently, denoising is of paramount importance for
the effective application of OCT technology. Currently, the
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primary method used in clinical practice to reduce noise
involves multiple scans at the same location followed by
averaging [12], [13]. While this approach can mitigate some
noise, it requires the patient to maintain eye fixation for an
extended period in order to acquire sufficient data, which
presents a significant challenge in clinical settings [14]. As a
result, numerous image processing methods have been pro-
posed and studied for the purpose of denoising OCT images
[15], [16].

In the early stages of OCT image denoising [17], most
traditional denoising methods rely on filtering techniques and
convolution operations. Buades et al. [18] proposed a nonlocal
means algorithm that estimates pixel values based on pixel
distances, effectively removing noise but with high compu-
tational complexity. Median filtering [19] replaces the center
pixel with the median value, effective for salt-and-pepper noise
but prone to blurring. The bilateral filter [20] reduces noise
by considering normalization factors, spatial, and distance
weights but has a high computational cost and may retain
excessive detail in noisy regions. Due to the limitations of
spatial filtering in edge preservation, wavelet-domain methods
have gained popularity. Donoho [21] introduced compressed
sensing and demonstrated wavelet-based denoising in sparse
domains, effective for high noise and low sampling, requiring
extensive optimization. Shankar [22] proposed the Visushrink
filter, which uses a threshold proportional to the noise standard
deviation, effective for additive noise but not for speckle noise.
Despite advances, challenges remain in effectively addressing
speckle noise. These methods aimed to minimize the mean
square error between the original and noisy images. However,
such straightforward techniques often struggle to achieve sat-
isfactory results in the complex tasks associated with OCT
image processing.

With advancements in computer vision, convolutional neu-
ral networks (CNNs), attention mechanisms, and transformer
models have been applied to denoising tasks. Zhang et al. [23]
investigated feed-forward denoising CNNs (DnCNNs), using
residual learning and batch normalization to accelerate train-
ing and improve performance for blind Gaussian denoising.
However, the lack of paired training data limits further opti-
mization. Chen et al. [24] proposed a two-step framework that
leverages GANs for noise modeling, generating noise samples
in the first step and using them to train the CNN denoising
network in the second. Armanious et al. [25] introduced
MedGAN, a framework combining adversarial learning with
novel loss functions for medical image translation. To address
performance saturation in deep CNN training, BRDNet [26]
integrates batch renormalization to mitigate covariate shift and
small batch issues. Jiang et al. [27] proposed MalleConv, using
dynamic filters generated by efficient predictors to adapt to
varying visual patterns in natural images, though bilinear inter-
polation may introduce artifacts or blurring. Yin and Ma [28]
introduced CSformer, a transformer-based denoising method
that employs multiscale feature extraction and fusion, enhanc-
ing self-attention, but its ability to recover small-scale textures
under high noise still needs improvement. Zhao et al. [29]
proposed a hybrid denoising model, TECDNet, combining a
transformer encoder and a CNN decoder, significantly reduc-

ing computational complexity, but the quadratic complexity of
self-attention may limit scalability. Fan et al. [30] introduced
SUNet, integrating the Swin transformer with UNet, outper-
forming previous CNN- and UNet-based methods. While these
methods demonstrate promising performance, they generally
require low-noise images as references for training, which may
not always be readily available in clinical medical settings
[31].

To address the challenge of obtaining ground-truth data [32],
Lehtinen [33] demonstrated that noise data from degraded
images alone can restore clear images, introducing the
Noise2Noise (N2N) strategy, which requires no clean target
images but needs a large number of noisy image pairs.
Krull et al. [34] further developed N2N with the Noise2Void
(N2V) strategy, where masking pixels and using surrounding
information allow training on noisy data without clean target
images, though proper selection of masked areas is crucial.
Similarly, Batson and Royer [35] proposed Noise2Self (N2S),
an unsupervised strategy that assumes noise independence and
signal correlation, learning self-similarity in local regions. Fur-
thermore, self-supervised learning has emerged as a promising
direction for unsupervised denoising. Wang et al. [36] pro-
posed the Blind2Unblind framework that constructs visible
blind spots for self-supervised learning while preserving noise
statistics. This paradigm was extended by Lee et al. [37]
through the AP-BSN framework using asymmetric projection
denoising and blind-spot networks, achieving better perfor-
mance in complex noise scenarios. Jang et al. [38] further
advanced this direction at ICCV 2023 by introducing down-
sampling invariance loss combined with conditional blind-spot
networks to better preserve spatial feature consistency. How-
ever, it cannot handle all types of noise. Prakash et al. [39]
introduced DivNoising, a method based on fully convolutional
variational autoencoders, overcoming the challenge of select-
ing a single denoised solution. To reduce the computational
cost of generating large samples in unsupervised methods,
Salmon and Krull [40] proposed a deterministic network strat-
egy that directly predicts the central tendency alongside the
VAE. Diffusion models, due to their strong noise estimation
capabilities, have become popular in denoising tasks. Zhen-
jie et al. [41] proposed a doubly physical-regularized denoising
diffusion model, which functions as a filter at each layer to
remove noise at different scales but requires large datasets for
training. Kulikov et al. [42] introduced SinDDM, a frame-
work for training denoising diffusion models on a single
image, combining its flexibility with the multiscale structure
of SinGAN to effectively guide the denoising process. In the
domain of medical imaging, specialized solutions have been
developed for OCT speckle noise. Yu et al. [43] adapted
the Blind2Unblind paradigm for OCT despeckling, achieving
effective noise reduction while preserving tissue structures
through self-supervised learning. Li et al. [44] proposed a
clean-data-free speckle reduction method demonstrating supe-
rior structural preservation in retinal OCT images. Zhou et al.
[3] made a breakthrough by integrating transformer architec-
ture with nonlocal means, using self-attention mechanisms to
capture global contextual information while maintaining high-
contrast features.
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While these advancements in unsupervised learning and dif-
fusion models have demonstrated remarkable progress, three
critical challenges persist in OCT image denoising: 1) existing
diffusion-based methods often sacrifice fine-grained details
when handling spatially correlated noise patterns inherent
in OCT scans; 2) the inherent conflict between blind-spot
training strategies and the global noise modeling requirements
of diffusion processes remains unresolved; and 3) most current
approaches inadequately address the unique layered struc-
ture and anisotropic noise distribution characteristics of OCT
images.

In this article, we propose a denoising method called
MR-DDPM, which is based on diffusion models and repre-
sents an enhanced unsupervised masked region-based DDPM
algorithm. As an unsupervised approach, MR-DDPM effec-
tively circumvents the challenge of obtaining ground-truth
data. The method incorporates the concept of blind-spot
masking, employing a pixel-level occlusion strategy during
training. This not only improves the removal of random noise
but also directs the model’s focus to neighboring regions,
preventing oversmoothing and preserving the original image
details and edges. In addition, the approach facilitates mutual
information exchange between occluded image groups, effec-
tively mitigating information loss due to occlusion. To further
address these challenges, we modify the U-Net architecture
by introducing a time-step embedding transformer module,
which is parallelized to the deepest layer of the U-Net network.
This modification enables the network to retain its fine-grained
modeling capabilities while incorporating a global receptive
field. In addition, by integrating the time-step parameter of
the diffusion model, the network becomes more adaptive
throughout the diffusion process, thereby enhancing its ability
to analyze and handle noise. The key contributions of this
work are given as follows.

1) We introduce the MR-DDPM algorithm, a denoising
method for OCT images that significantly reduce noise
while ensuring the preservation of essential edge and
detail information without relying on ground-truth data.

2) We modify the Unet network by incorporating a
time-step embedding transformer to better suit the
noise characteristics of OCT images. This enhancement
enables the network to maintain fine-grained modeling
capabilities while possessing a certain global recep-
tive field. The time-step embedding transformer module
explicitly encodes the noise time-step information from
the diffusion model into dynamic spatial attention biases,
replacing the traditional static positional encoding. This
helps guide the model to focus on global structures
during the early denoising stages (high noise levels)
and on local details during the later denoising stages
(low noise levels), thereby further improving its ability
to analyze and remove noise.

3) Experimental results demonstrate that the proposed
MR-DDPM algorithm significantly improves image
quality in quantitative metrics such as SNR, CNR, and
structural similarity index measure (SSIM), as well as
in visual assessments. In addition, further segmenta-
tion experiments on the denoised images verify that
the algorithm enhances the performance of subsequent
segmentation tasks.

II. METHOD

A. Diffusion Models
MR-DDPM is based on the core principles of DDPM. The

main theoretical concepts and mathematical foundations of
DDPM are briefly introduced in the following.

Diffusion models generally consist of two stages: diffusion
and denoising. During the diffusion stage, noise is progres-
sively added to the input image at different scales, gradually
degrading the image until it is transformed into a Gaussian
noise distribution, as shown in the following equation:

xt =
√

αt xt−1 +

√
1 − αt z, z ∼ N (0, 1) (1)

where xt represents the result of the diffusion process at the
time step t . αt = 1 − βt , which represents the variance of the
noise added at each diffusion step. xt−1, which is similar to
xt , represents the image at time step t −1. Finally, z represents
the random noise.

Next, by applying the reparameterization trick, the following
expression can be derived:

q(xt |xt−1) ∼ N (xt ;
√

αt xt−1, (1 − αt )I ). (2)

Furthermore, if x0 is known, it is possible to derive xt at any
given time step

xt =

√
ᾱt x0 +

√
1 − ᾱt z, z ∼ N (0, 1) (3)

where ᾱt =
∏t

i=0 αi . Similarly, the conditional probability
distribution of xt can also be derived as follows:

q(xt |x0) ∼ N (xt ;
√

ᾱt x0, (1 − ᾱt )I ). (4)

The diffusion process involves the gradual addition of
noise to the data, while the reverse process corresponds to a
denoising procedure. If the true distribution q(xt |x0) of each
step in the reverse process is known, it becomes possible to
generate a real sample by progressively denoising from an
initial random noise xT ∼ N (0, 1). Hence, the reverse process
can be interpreted as the data-generation process

pθ (x0:T ) = p(xT )

T∏
t=1

pθ (xt−1|xt ) (5)

where pθ ∼ N (0, 1) By leveraging the Bayesian theorem and
the Markov chain property, with the addition of infinitesimal
Gaussian noise at each step, the following equation is derived:

pθ (xt−1|xt , x0) ∼ N (xt−1, µθ , σ
2
θ I ) (6)

where

µθ =

√
¯αt−1(1 − αt )

1 − ᾱt
x0 +

√
αt (1 − ¯αt−1)

1 − ᾱt
xt (7)

σ 2
θ =

(1 − ¯αt−1)(1 − αt )

1 − ᾱt
. (8)

Subsequently, the new expression for the mean can be obtained
through iteration

µθ =
1

√
αt

(
xt −

βt
√

1 − ᾱt
zt

)
. (9)

Finally, the noise zt in formula (9) can be predicted using the
neural network, which enables the estimation of the mean µ.
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Fig. 1. MR-DDPM algorithm framework diagram. Branch 1: from input1 to output1; Branch 2: from input2 to output2. The results of the two
branches are weighted and averaged to produce the network output I5.

B. MR-DDPM
To address the issues of image blurring, excessive smooth-

ing, or incomplete noise removal caused by denoising
algorithms, this article proposes masked region-based DDPM.
The strategy of MR-DDPM is illustrated in Fig. 1.

The clearest possible B-scan images are first obtained as
inputs. As shown in Fig. 1, the network consists of two
branches: Branch 1 (from input1 to output1) and Branch 2
(from input2 to output2), represented by thick and thin arrows,
respectively. The outputs of both branches are weighted and
averaged to produce the network output I5, which is then used
to compute the loss relative to the original image I0.

In Branch 1, the input image is initially processed through
the region-based masker module. The functionality of the
region-based masker module is illustrated in Fig. 2, where the
input image is divided into groups of four pixels, each assigned
a label. In Step A, the image is duplicated into two copies.
In Step B, all pixels labeled as 1 and 3 in the first image are
masked, while all pixels labeled as 2 and 4 in the second image
are masked. The image I1 is then passed through the diffusion
model to generate output I2, which is subsequently processed
by the mask rebuilder to produce I3. The functionality of
the mask rebuilder module is shown in Fig. 3, where in
Step A, the input image is segmented into individual pixels;
Step B selects specific pixels as shown in the figure; and
in Step C, the selected pixels are reassembled into a new
image.

In Branch 2, the input image I0 is directly passed through
the diffusion model to generate I4. The outputs from both
branches, I3 and I4, are then weighted and averaged to
obtain the final network output I5. The coefficients α and
β represent the weighting factors for the I4 image and the
I3 image, respectively. Specifically, the I3 image undergoes
pixel-level feature filtering via the region-based masker mod-
ule, so increasing the coefficient β enhances the denoising
performance of the final output. In contrast, the unmasked
I4 image preserves original details, and a larger α value
improves SSIM of the output. Based on experimental vali-
dation, the balanced setting of α = 0.5 and β = 0.5 was
chosen to achieve an optimal tradeoff between denoising
capability and structural preservation. This masking approach
enhances the model’s capability to infer the current posi-
tion based on adjacent pixels, which not only improves
random noise removal performance but also significantly
boosts the structural similarity between samples and ground
truth. However, such masking may also result in partial
information loss and neglect of global pixel distribution
due to localized subregion focus. To address this limita-
tion, we designed an output2 pathway that supplements the
missing information by fusing the masked image (I3 from
output1) with the complementary image (I4 from output2) via
weighted summation. This dual-pathway architecture ensures
both localized detail preservation and global pixel distribution
consideration. In addition, the set of images generated by
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Fig. 2. Introduction to the region-based masker module.

Fig. 3. Introduction to the mask rebuilder module.

the region-based masker module further mutually reinforces
information through their diversified spatial coverage, thereby
mitigating occlusion-induced information deficits and enhanc-
ing overall reconstruction fidelity.

C. Time-Transformer Block
The diffusion model typically uses the U-Net architecture

to fit parameters such as the mean and variance during the
reverse process. For the MR-DDPM strategy proposed in
this article, we also enhance the Unet network by intro-
ducing a time-step embedding transformer module. In our
approach, the time-step parameter t does not refer to the
dynamic temporal information inherent to OCT images (e.g.,
the temporal dimension in sequential imaging) but rather
represents the time-step encoding of the diffusion process in
the diffusion model. Specifically, in the diffusion framework,
t denotes the current stage of the diffusion process (i.e., the
t th step among T steps from the original image to pure
noise). This time step is embedded into the network via
positional encoding, allowing the model to perceive the current

noise level. The time-transformer module facilitates interaction
between the temporal encoding and spatial features through
a cross-attention mechanism within the transformer architec-
ture. This enables the model to focus on global structure
reconstruction during early high-noise stages and refine local
details in later low-noise stages. Such a design allows the
model to dynamically adapt denoising strategies, addressing
potential oversmoothing or underdenoising issues inherent in
static architectures like the conventional U-Net. As shown in
Fig. 4, at the deepest layer of the U-Net network (denoted
position 1), a time-step embedding transformer module is
added. The output of the transformer module and the orig-
inal CNN module of the network is combined through a
weighted average before being passed to the next layer. This
is a dynamic time-conditioned positional encoding, which
explicitly encodes the noise time-step information (timestep t)
from the diffusion model into dynamic spatial attention biases,
replacing the traditional static positional encoding. This mod-
ule helps guide the model to focus on global structures during
the early denoising stages (high noise levels) and on local
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Fig. 4. Improvements of U-Net.

details during the later denoising stages (low noise levels).
First, the time step t is mapped to a high-frequency/low-
frequency mixed embedding vector

et = MLP
([

sin
(

104i/d
· t

)
, cos

(
104i/d

· t
)]d/2

i=0

)
. (10)

This embedding is injected into the attention layer as a
dynamic bias

Q = XWQ + et Wt
Q, K = XWK + et Wt

K . (11)

The attention weights are then computed as

Attention = Softmax
(

QK⊤

√
d

+ Bt

)
V. (12)

The addition of the transformer module at the deepest layer not
only minimizes computational resource consumption but also
combines the fine-grained modeling ability of the CNN with
the global receptive field characteristics of the transformer.

III. EXPERIMENTS

To evaluate the MR-DDPM algorithm and the improved
U-Net architecture, experiments are conducted on OCT
B-Scan images. The obtained results are compared and
analyzed with several methods, including median filtering,
Blind2Unblind, BM3D, and Mgan.

A. Dataset
OCT2017 [45] is a publicly available dataset that contains

over 80 000 OCT images, including images of various sizes
and classifications of both diseased and normal conditions.
In this article, 600 high-quality B-Scan images with a size of
496 × 496 are selected from this dataset for the experiments.

B. Implementation Details
All experiments in this article are tested and trained on an

NVIDIA A100 Tensor Core GPU. The B-Scan images are
normalized to the range of [−1, 1]. In the diffusion model,
the number of diffusion steps is set to T = 1000, meaning
that the input is gradually corrupted into Gaussian noise over
1000 steps. The training employs the neural network shown in
Fig. 4, with a batch size of 2. The learning rate is initialized to
0.001 and decays every 5 epochs. The Adam optimizer is used
for training. The entire training process lasts for 600 epochs
to ensure the accuracy of the results.

C. Denoising Results and Analysis
After 600 epochs of training, the model with the lowest

loss is saved for inference. The final results are compared
with those obtained using several methods, including median
filtering, Blind2Unblind, BM3D, and Mgan, as shown in
Fig. 5.

As shown in the figure, the original image contains signif-
icant random noise, speckle noise, and structural noise due
to the inherent properties of OCT and the device structure,
which severely interferes with subsequent tasks. Mean fil-
tering, a classical image denoising method, performs well
in removing uniform noise; however, it tends to cause blur-
ring of the image. As demonstrated in the figure, while the
Blind2Unblind method achieves significant noise reduction,
its training strategy involving continuous large-scale occlusion
exhibits limitations. During this process, the model is forced to
infer occluded information based on adjacent regions’ features.
When processing OCT images, where signal and noise features
are highly overlapped, the true details may be erroneously
classified as noise and excessively suppressed. This processing
approach leads to unnatural oversmoothing artifacts, resulting
in the distortion of critical pathological information. Similarly,
BM3D is more effective for Gaussian noise removal, but its
performance is limited when dealing with the diverse types
of noise in OCT images, which exhibit different spatial and
frequency distributions. Although Mgan can generate visually
realistic denoised images, it sometimes overrepairs fine details
or introduces artifacts, resulting in the loss of true image
details and textures.

The MR-DDPM algorithm demonstrates the best perfor-
mance, as shown in Fig. 5. It is commonly assumed that
images dominated by random noise consist of a background
and noise, where the background is continuous and the noise is
independently distributed. Therefore, the pixel-level masking
approach not only significantly enhances the model’s ability to
remove random noise but also enables the model to focus on
preserving the continuity of the image by attending to adjacent
regions. In addition, the information within the same group of
masked images can complement each other, thereby preventing
information loss, a common issue in other similar masking-
based algorithms. The improvements made to the network also
enable it to retain fine-grained modeling capabilities while
incorporating a global receptive field.

D. Evaluation Metrics
This article adopts an unsupervised learning approach, with

CNR and SNR selected as evaluation metrics to assess the
denoising model’s performance. Since OCT images are a type
of medical imaging, denoising must not only remove noise but
also preserve the original structure of the image. Therefore,
the SSIM is also included as an additional evaluation metric.
In the absence of ground truth for comparison, CNR and
SNR are computed based on the noise and signal regions
of the comparison images. These regions are determined
using a thresholding method, where two 40 × 60 areas are
selected. The metrics presented in Table I are then obtained
by averaging over multiple iterations. It can be observed that
the MR-DDPM algorithm not only performs the best in terms
of the visual quality of the images but also demonstrates supe-
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Fig. 5. Comparison of denoising performance across different algorithms.

TABLE I
SNR, CNR, AND SSIM RESULTS OF DIFFERENT

DENOISING ALGORITHMS

rior performance across all evaluation metrics. The detailed
calculation formulas for CNR, SNR, and SSIM are translated
as follows:

CNR =
µsignal − µbackground

σbackground
(13)

SNR =
µsignal

σbackground
(14)

where µsignal represents the mean pixel value of the signal
region. µbackground represents the mean pixel value of the
background region. σbackground represents standard deviation
of pixel values in the background region

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ 2
x + σ 2

y + C2)
(15)

where σ 2
x and σ 2

y represent local variances of x and y. σxy
represents the covariance between x and y.

Denoising is a preprocessing task in OCT retinal image pro-
cessing, with the ultimate goal of enhancing the performance

TABLE II
MIOU AND ACC RESULTS OF DIFFERENT DENOISING ALGORITHMS

of subsequent tasks. The results from Fig. 5 are then used
for retinal layer segmentation. The retinal segmentation is
also performed using a deep learning approach, specifically
the method developed in previous work [46], [47] by the
laboratory. The final retinal layer segmentation results are
shown in Fig. 6.

As shown in Fig. 6, the original image suffers from seg-
mentation errors in certain regions due to excessive noise,
leading to incorrect pixel classification. The mean filter, on the
other hand, results in significant segmentation errors due to
boundary blurring. The oversmoothing artifacts caused by
the Blind2Unblind algorithm also result in a decline in seg-
mentation accuracy. The performance of the remaining three
algorithms is further analyzed through the quantitative metrics
presented in Table II. The calculation methods for MIOU and
ACC indicators are given as follows:

IoUi =
TPi

TPi + FPi + FNi
, MIOU =

1
N

N∑
i=1

IoUi (16)
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Fig. 6. Comparison of segmentation results across different algorithms.

TABLE III
ABLATION EXPERIMENT

ACC =
TP + TN

TP + TN + FP + FN
(17)

where TPi represents true positive pixels of class i . FPi
represents false positive pixels of class i . FNi represents false
negative pixels of class i . As shown in Table II, compared
to the BM3D and Mgan algorithms, MR-DDPM achieves the
best results in terms of both MIOU and ACC metrics. The
segmentation results further validate the superior performance
of the MR-DDPM denoising algorithm.

E. Ablation Study
We conduct ablation tests to verify the effectiveness of

the key components of our designed model. This article
primarily proposes an improved U-Net method with a parallel
time-transformer block at the deepest layer of the network,
along with the region-based masker module. Next, we sequen-
tially remove the improved U-Net and region-based masker
modules to observe the impact on the denoising metrics,
as shown in Table III.

F. Discussion
As shown in Fig. 5, we demonstrated denoising perfor-

mance comparisons across multiple algorithms. The noise

configuration in Fig. 5 represents a common pixel-level noise
type in OCT imaging caused by light source fluctuations,
where the critical challenge lies in the near-identical inten-
sity distributions between noise and signal components. The
proposed MR-DDPM algorithm exhibited outstanding denois-
ing performance in this scenario while preserving structural
similarity, as evidenced by the SSIM metric. However, Fig. 5
utilizes healthy retinal images where noise-signal bound-
aries remain relatively distinct. In contrast, Fig. 7 presents
pathological retinal images from diseased patients, where
signal-noise boundaries are far less distinguishable due to
the complex pathological features. Notably, the MR-DDPM
algorithm maintained superior denoising performance even
under these challenging conditions, demonstrating its robust-
ness across diverse clinical scenarios.

The MR-DDPM adopts noise prediction rather than direct
image reconstruction due to three critical advantages. First,
parameterizing the model to estimate ϵθ (xt , t) establishes
mathematical symmetry with the forward diffusion process
q(xt |xt−1), enabling stable training via MSE loss, which
directly measures prediction accuracy at each noise level.
Second, the incremental noise addition through Markov chains
allows progressive denoising: each step’s conditional prob-
ability pθ (xt−1|xt ) only needs to reverse the current noise
perturbation, avoiding the instability of directly modeling
complex image distributions. Third, this framework naturally
handles multimodal medical noise (speckle, structural, and
stochastic) by decomposing the denoising task into manage-
able stochastic steps. The masked region mechanism further
refines this process by localizing noise estimation to critical
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Fig. 7. Denoising performance of retinal diseases.

anatomical areas while preserving global tissue structure
through the diffusion’s inherent spatial coherence.

As illustrated in Fig. 8, the diffusion model employed in
this study consists of two core stages: the forward process
(forward process, orange box) and reverse process (reverse
process, green box). During the forward stage, the original
OCT image I0 undergoes T = 1000 diffusion steps of
gradual noise injection, ultimately transforming into a pure
noise image. The reverse stage achieves progressive denoising
through an inverse process from t = 1000 to t = 1. Notably,
the image generated at t = 1 exhibits more pronounced
denoising effects compared to the original I0. This is attributed
to the parametric capacity of the model to progressively predict
the noise distribution, acquired through training with parame-
terized reverse mappings. Specifically, during inference, the
original image is first mapped to the noise space where
inherent noise components are progressively incorporated into
the artificially added noise. In the reverse recovery process, the
model progressively extracts and preserves critical structural
features through backward diffusion steps, ultimately aligning
the generated image distribution with the ideal clean image
distribution. It is important to emphasize that training data
quality significantly impacts model performance. Theoreti-
cally, using completely noise-free training images would yield
optimal denoising results. However, in OCT imaging applica-
tions, obtaining such pristine images is technically challenging
due to inherent device limitations. To address this limitation,
this study will subsequently develop a dedicated imaging
system to implement a multiple-scan averaging method. This
approach aims to acquire image data approaching the ideal
clean state, thereby further enhancing the denoising capability
of the diffusion model.

The innovative aspects of our algorithm primarily focus
on the training strategies and neural network architecture
optimization. However, during the inference phase, the con-
ventional approach of DDPM remains in use. Notably, the

Fig. 8. Visualization display of denoising process.

relatively slow inference speed remains a prevalent challenge
for diffusion models. Therefore, in future experiments, we aim
to further optimize the network’s inference efficiency through
targeted improvements.

The article is theoretically grounded in the principles of
blind denoising algorithms such as N2V, where local context
learning enables the model to infer pixel values based on
adjacent regions. By masking pixels at the training stage,
the model learns to disentangle noise from structural patterns
while preserving edges and details. Our method extends this
idea by leveraging region-based masking and intersample com-
plementarity, which further enhance structural preservation.
The improvement in SSIM is empirically validated through
ablation studies, demonstrating that our approach retains more
structural information compared to baselines.

IV. CONCLUSION

To enhance the denoising of OCT B-Scan images while
preserving fine details and avoiding excessive smoothing,
this article proposes a region-based masking approach. This
method applies pixel-level masking to the input image accord-
ing to a predefined rule. It effectively removes random noise
and enables the model to focus on adjacent regions to infer the
value of the current pixel. In addition, the information within
the same group of masked images can complement each other,
preventing information loss caused by the masking process.
Furthermore, an improvement to the U-Net architecture is
proposed, where a time-transformer block is integrated in
parallel at the deepest layer of the network. This modifica-
tion allows the model to maintain the fine-grained modeling
capabilities of CNNs while leveraging the global receptive
field of transformers. In addition, by integrating the time-step
parameter of the diffusion model, the network becomes more
adaptive throughout the diffusion process, thereby enhancing
its ability to analyze and handle noise. Experimental results,
both qualitative and quantitative, in terms of SNR, CNR, and
SSIM, demonstrate the superiority of the proposed algorithm.
Further segmentation experiments, based on the denoising
results, also validate the effectiveness of MR-DDPM. Thus,
the MR-DDPM denoising algorithm presented in this article
significantly contributes to the preprocessing of OCT images,
improving the accuracy of subsequent tasks such as segmen-
tation, and holds substantial implications for the advancement
of OCT technology.
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