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Abstract—Objective:Optical coherence tomography (OCT) is a
rapid and non-destructive imaging technique, but image bright-
ness decreases when imaging deep tissues or under low power and
short exposure due to insufficient backscattered light. This issue is
more pronounced in visible-light micro-OCT (vis-µOCT), where
shorter wavelengths increase scattering and limit penetration,
restricting its application. Method:In this paper, we propose Dif-
NIR, a novel framework for enhancing low-light OCT images.
The framework begins with a preliminary denoising stage.
Image enhancement is then performed using a neural implicit
representation (NIR) network, in which pixel values are incorpo-
rated as auxiliary input to mitigate the oversmoothing effect of
fully connected layers. To enable unsupervised learning, custom-
designed loss functions is employed. The proposed method is
validated through qualitative and quantitative comparisons on
a self-collected en face image dataset. To further assess its
generalizability, we also performed experiments on B-scan images
and retinal images acquired from other OCT devices. Result:
On the en face image dataset, Dif-NIR outperforms existing
methods in terms of visual quality, SNR (58.99 dB), CNR
(49.56 dB), and NIQE (9.0553). It also effectively generalizes
to OCT B-scan images and retinal images acquired by other
devices. Conclusion: The proposed network effectively mitigates
unpredictable brightness degradation, producing clearer and
better-illuminated images while exhibiting strong generalization
capability. Significance: The network effectively reveals deep-
layer information in OCT images and can be applied to expand its
usage scenarios to cost-effective and high-speed imaging settings.

Index Terms—Vis-µOCT, Zero-shot learning, Image enhance-
ment, Neural implicit representation

I. INTRODUCTION

OPTICAL coherence tomography (OCT) [1] is a fast,
three-dimensional, non-invasive optical imaging modal-

ity that provides high resolution in both axial and lateral
directions. It has been widely applied in various clinical
and research fields, including cardiology [2], otology [3],
dermatology [4], cytology [5], dentistry [6], urology [7],
and ophthalmology [8]–[10]. The conventional OCT system
typically achieves axial and lateral resolutions on the order of
3-5 µm and 5-8 µm, respectively. With the advent of super-
continuum sources(SC), which provide a smooth, continuous
ultra-broad spectrum, researchers have demonstrated that by
combining visible and near-infrared wavelengths, a Micro-
OCT (µOCT) system can be developed that achieves a five-
fold improvement in resolution across all spatial directions

compared to traditional OCT [11]. The µOCT system built
using the visible light spectrum is referred to as visible-light
µOCT (vis-µOCT).

En face images provide unique advantages in scenarios that
demand detailed lateral information or multi-layered structural
analysis. The resolution of en face images is predominantly
determined by the numerical aperture (NA) of the focusing
objective in the sample arm of the OCT system. In general,
a larger NA results in higher lateral resolution and the ability
to distinguish smaller details, but it also reduces the depth of
focus.

Although visible-light illumination sources hold promise for
achieving high resolution, according to Beer-Lambert law, the
intensity of the light beam in the sample arm diminishes as
it penetrates deeper into the tissue, resulting in reduced light
reaching deeper layers and weaker backscattered signals [12].
Furthermore, scenarios with lower hardware costs are more
prone to exhibit conditions such as low input power, low
quantum efficiency, and low exposure time. As a result, en face
images captured at different depths exhibit variable illumina-
tion conditions. In addition, the excessive relative intensity
noise (RIN) of SC introduces significantly higher noise levels,
further complicating the imaging process.

Consequently, en face vis-µOCT images are frequently af-
fected by several quality issues, including low illumination and
high noise levels. To mitigate these degradations, researchers
have investigated a range of potential solutions. Among hard-
ware advancements, the most commonly employed technique
is compounding [13]. Another approach involves analyzing
the slope of the A-line profiles within homogeneous tissue
to calculate the attenuation coefficient and compensate for
intensity loss [14]. These methods are typically complex
to implement and may require the acquisition of additional
optical components, increasing their overall cost. Therefore,
low-cost deep learning methods are gradually attracting our
attention.

In order to achieve image enhancement under low light,
we propose a zero-shot enhancement framework based on the
Retinex theory [15] in this paper. Our key contributions are
summarized as follows.

• We analyze the limitations of existing algorithms in
addressing the specific challenges of en face vis-µOCT
images and propose the Dif-NIR capable of simultane-
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ously mitigating various forms of image degradation. By
seamlessly integrating denoising and enhancement, this
network progressively improves image quality.

• We further investigate an image enhancement module
based on neural implicit representations (NIR), wherein
grayscale values are incorporated as additional informa-
tion for the network. Two parallel branches are designed
to explore the optimal weighting of these grayscale val-
ues. To facilitate zero-shot training, we introduce multiple
loss functions that effectively guide the image restoration
process.

• We compile a dataset of en face vis-µOCT images from
orange, cucumber, and chicken lung using our system.
The proposed method is validated on this self-collected
dataset, demonstrating superior performance compared to
traditional methods and other deep learning approaches,
as evidenced by both visual quality and quantitative
metrics.

II. RELATED WORK

A. Traditional Methods

Traditional methods, such as grayscale histogram equal-
ization [16], rely heavily on carefully designed optimization
rules. Abdullah et al. [17] proposed a dynamic histogram
equalization (DHE) technique, which partitions the histogram
and applies equalization to each region independently. How-
ever, this method does not account for the actual brightness
information, which can lead to overexposure or insufficient
enhancement [18]. To overcome this problem, Chao et al. [19]
introduced the histogram equalization preserving brightness
with maximum entropy (BPHEME), which enhances the im-
age while maintaining the original brightness. Reza et al. [20]
proposed a system-level implementation of contrast-limited
adaptive histogram equalization (CLAHE), which enhances
image contrast while preserving local features. However, these
methods are based on well-established prior assumptions,
which limit their applicability in real-world scenarios where
the lighting conditions may vary significantly.

B. Deep Learning-Based Methods

Recent advancements in low-light image enhancement using
deep learning [21]–[26] have outperformed traditional meth-
ods. However, these methods heavily depend on high-precision
paired datasets, limiting their applicability in medical imaging,
thereby making unsupervised image enhancement networks
more advantageous. Unsupervised image enhancement net-
works can be broadly categorized into two types: one that
applies dynamic pixel adjustments inspired by techniques like
gamma transformation, with works such as ZeroDce and its
lightweight variant ZeroDce++ [27]. The other type is based
on the Retinex theory. Anqi et al. [28] extended the Retinex
theory by incorporating noise components, decomposing the
image into illumination, reflectance, and noise components,
which improved restoration quality to some extent. Yifan et
al. proposed an unsupervised generative adversarial network,
EnlightenGAN [29], which leverages information from the
input itself to guide unpaired training, achieving excellent

visual results. Risheng et al. [30] introduced a novel Retinex-
inspired method called Unrolling with Architecture Search
(RAUS), which develops a collaborative dual-layer search
strategy, achieving enhanced results while also saving memory.
Long et al. proposed the SCI [31] framework, which estimates
low-illumination images from the input and incorporates a
self-calibration module to reduce inference costs. Fu et al. [32]
took an alternative approach by feeding two low-light im-
ages with different illumination conditions into the network
(PairLIE) to train the model’s ability of accurately decompose
them, subsequently recovering the image by correcting the illu-
mination map. Jiang et al. extended the PairLIE approach and
proposed a two-stage training method, LightenDiffusion [33],
achieving state-of-the-art performance.

While unsupervised deep learning methods demonstrate in-
herent suitability for medical imaging scenarios where ground-
truth annotations are scarce, their direct deployment on OCT
images risks amplifying noise during processing. Moreover,
most existing networks require retraining when switching
datasets, which significantly compromises their generalization
capability. Therefore, we attempt to integrate a denoising
component into the network architecture, suppress noise simul-
taneously throughout the enhancement process, and redesign
a zero-shot network based on NIR.

III. METHOD

A. Overview

The general architecture of the proposed framework is
illustrated in Fig. 1. Given an original en face vis-µOCT
image x0 ∈ RH×W×1, the process begins with a Preliminary
Denoising Module (PDM) that utilizes the denoising diffusion
probability model (DDPM) to iteratively remove noise. The
image is then resized and passed through the Image Enhance-
ment Module (IEM), in the end, subsequently restored to its
original size through a fast guide filter [34].

B. Preliminary Denoising Module

In the denoising phase, the PDM follows the standard
diffusion model [35], where forward diffusion is employed
to train the network, and reverse sampling is subsequently
applied to generate an initial image with effectively removed
noise. To improve denoising performance, the model was
retrained using OCT images. It is worth noting that the PDM
serves as a preprocessing step for OCT image enhancement
and can be replaced by other denoising networks in principle.
Additionally, if the noise level in the images is low, removing
this component can still achieve good enhancement results.

C. Image Enhancement Module

The Retinex theory serves as a fundamental framework
in the field of low-light image enhancement, establishing a
mathematical relationship between a low-light image X and
its corresponding ideal image under normal illumination R. By
introducing an illumination map L that represents the true local
lighting conditions, the theory models the mapping between
the X and R. In low-light image enhancement research,
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Fig. 1. The overall architecture of the Dif-NIR. Preliminary denoising is performed using a pre-trained PDM. Subsequently, during the zero-shot training
phase, the image is first downsampled to a smaller size, followed by pixel-wise processing through a constructed MLP layer with a dual-branch structure.
Finally, the image is restored to its original resolution using a fast guide filter, guided by the original image.

accurately estimating the illumination map L is critical for
preserving image details and avoiding processing artifacts. The
mathematical relationship among X , R, and L is formulated
as follows:

X = R⊙ L (1)

where ⊙ denotes the operation of the Hadamard product.
To achieve accurate estimation of the illumination map l,

this study introduces a parameterized mapping function F (x),
as shown in Equation 2. Based on the estimated illumination
map l and the observed low-light image x, the corresponding
image r under ideal lighting conditions can be further de-
rived. Additionally, to reduce computational complexity and
enhance the stability and robustness of exposure control while
avoiding overexposure, a function fι(·) is employed to learn
the residual between l and Xi. This design is inspired by
the widely accepted assumption that the illumination map and
low-light images exhibit structural similarity, with a near-linear
relationship in most regions.

F (x) :

{
l = x+ fι(·)
r = x⊘ l

(2)

In constructing the model for fι(·), a parameterized Multi-
layer Perceptron (MLP) is employed to map the input image
x to a residual image, enabling precise modeling of the
differences between the illumination map and the low-light
image. Based on the framework of NIR, the MLP establishes
a continuous mapping between image intensity values and
spatial coordinates, providing theoretical support for the model
design. Unlike conventional RGB image mappings that involve
handling three separate channels as defined in Equation 3,
OCT grayscale images contain only a single channel. There-
fore, the mapping is directly learned from the two-dimensional

spatial coordinates to the corresponding grayscale value at the
target location.

f : (x, y) −→ (r, g, b) (3)

Furthermore, to address the tendency of fully connected net-
works to produce overly smooth global features, the grayscale
value at each pixel is also included in the input. Moreover,
inspired by the residual connection structure, we employ
a dual-branch structure and further investigate the weight
adaptation for pixel value in-formation. To overcome the repre-
sentational limitations of the ReLU activation function, which
lacks second-order derivatives, SIREN [36] layers are used to
construct the MLP. As illustrated in Fig. 1, the architecture
consists of a main branch that processes the concatenated
pixel coordinates and grayscale values, and a secondary branch
that uses only the grayscale value to provide fine-grained
corrections. The main branch reduces its feature dimensions
by half before being connected to the output layer, while the
correction branch maintains a fixed width of 256 channels
across all hidden layers. The residual maps generated by the
two branches are then fused with the appropriate weights to
produce the final residual map. The residual map estimation
process can be represented by Equations 4 and 5.

fl(·) :

{
([hr, wr], vr) → j1r

(vr) → j2r
(4)

j = a · j1 + b · j2 (5)

Where [hr, wr] denotes the coordinates of the pixel at position
r in Xi, and vr represents the grayscale value of the pixel at
this location. j1 and j2 are the residual images estimated by
the two branches, with a and b being the fusion weights for the
two images. Finally, j is the resulting residual image obtained
after the fusion process.
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IV. NETWORK TRAINING

A. Diffusion Model

Specifically, PDM optimizes the parameters θ of the noise
estimation network by training the network’s ability to esti-
mate noise, ensuring that the noise ϵt estimated by the network
closely approximates the noise added to the image at the
current time step. The loss function of the diffusion model
is as follows:

Ldiff =∥ ϵt − ϵθ(Xt, x0, t) ∥2 (6)

B. Zero-shot Training

The fidelity loss Lspa is designed to maintain the consis-
tency of the pixel level between the estimated illumination
map l and the image Xi, which is expressed as:

Lspa =∥ Xi − l ∥2 (7)

The smoothness loss Ltv is designed to ensure the smooth-
ness of the estimated illumination map. This is based on the
common assumption that the illumination of an image should
be locally or even globally smooth, without large gradients.
The illumination smoothness loss is defined as:

Ltv = (∥ ∇il ∥2 + ∥ ∇j l ∥2)2 (8)

Where ∇i and ∇j represent the vertical and horizontal gradi-
ent operations, respectively.
Lexp is designed to adjust the overall brightness level of the

l, thereby indirectly influencing the overall brightness level of
the restored image.

Lexp =
1

N

N∑
k=1

∥
√

Tk − 0.6 ∥2 (9)

Where N represents the number of subdivisions of l into N
small regions, and Tk denotes the average gray value of each
region. The value 0.6 is a hyperparameter we set manually,
where different values result in different brightness levels.

To maintain the fidelity of different regions in the image and
prevent excessively high brightness values, we employ Lg to
constrain the brightness values of each pixel in Xii and M
represents the total number of pixels in the image.

Lg =
1

M

M∑
1

| Xii | (10)

Although most of the noise is filtered out during PDM,
the unavoidable amplification of noise during IEM remains a
persistent challenge. Therefore, the learned perceptual image
patch similarity (LPIPS) is used to minimize the perceptual
differences between the output image Xiii and X0. The vgg
network is selected as a measure of perceived similarity.

Lp = vgg(X0, Xiii) (11)

Finally, the losses are assigned different weight values and
then summed. The total loss of the zero-shot enhancement
network is expressed as:

Ltotle = αLspa + βLtv + γLexp + δLg + ηLp (12)

V. EXPERIMENTS

A. Dataset

The vis-µOCT system developed in our laboratory is used
for data acquisition. The system utilizes a light source with a
wavelength range of 500-750 nm and incorporates a custom-
designed spectrometer, achieving an axial resolution of 1.3
µm and a lateral resolution of 1.5 µm. The schematic and
corresponding photograph of the device are presented in
Fig. 2. Imaging was performed on various biological tissues,
including cucumber, orange pulp, and chicken lung. Due to
the shallow depth of focus of the system, only en face images
near the focal plane were selected to construct the dataset.

B. Implementation Details

The DDPM is trained using the U-Net architecture as the
noise estimation network. The images were randomly cropped
to a size of 64×64, and the Adam optimizer was used for
training with parameters β1 = 0.9, β2 = 0.999, and a learning
rate set to 2 × 10−5. The forward diffusion time step T was
set to 1000, and the sampling step S was set to 20. After
freezing the DDPM, the learning rate for the Adam optimizer
in IEM was set to 0.001, with training conducted over 300
epochs. After the 100th epoch, the learning rate was halved
every 10 epochs. The weight coefficients for the various loss
terms were set as follows:α = 1, β = 20, γ = 8, δ = 5 and
η = 8, while the fusion weights for the residual images are
set as a = 0.9 and b = 0.1. To improve efficiency, the images
were downsampled to a resolution of 256×256 before entering
the enhancement network. It is worth noting that in IEM,
the network does not require extensive training datasets but
instead selectively focuses on the current image, enhancing
its generalization capability, which demonstrates the zero-shot
nature of our framework.

DM
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Fig. 2. (a) the schematic of the vis-µOCT. (b) the photograph of the
system.SC: supercontinuum;DM: dichroic mirror;ND: neutral density fil-
ter;BD: beam dump;SPEC: spectrometer;FC: fiber coupler;M: mirror;GM:
galvanometer mirror;DC: glass plate.

C. Comparision With Existing Methods

1) Comparison Methods: To validate the superiority and
advancement of the proposed method on en face vis-µOCT
images, we perform a comparative analysis using traditional
methods and recent state-of-the-art unsupervised methods on
our dataset. Since ground truth data is unavailable, super-
vised methods are excluded from the comparison. Traditional
methods include HE [16], CLAHE [20], and methods based
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on entropy curves and homomorphic filtering [37]. Unsu-
pervised methods include ZeroDce [27], ZeroDce++ [27],
RRDNet [28], and SCI [31].

2) Quantitative Comparison: No-reference evaluation met-
rics, including the Average Gradient (AG), Contrast-to-Noise
Ratio (CNR) and Natural Image Quality Evaluator (NIQE)
[38], are used to assess the contrast and naturalness of the
enhanced images. The Signal-to-Noise Ratio (SNR) evaluates
the noise reduction capability of the network, while the LPIPS
[39] measures the similarity between the enhanced and original
images. To more accurately differentiate between signal and
noise regions, we measured the SNR using epoxy resin mixed
with polystyrene microspheres as the sample material, desig-
nating the microspheres as the signal region and the remaining
area as the background. Moreover, to prevent AG from failing
to reflect true image quality due to large gradient differences
between background and signal regions, we calculate AG
using only the signal region for a fairer comparison. This
approach may yield higher AG values because the denominator
in the formula, which represents the total number of pixels,
is reduced by excluding background areas. As a result, the
AG value may increase even though boundary gradients are
removed. The calculation methods for AG, SNR and CNR are
shown in Equation 13, Equation 14 and Equation 15. ∇ix
and ∇jx represent the gradients of the image in the row
and column directions, respectively. meansignal represents the
mean of the signal region, stdnoise represents the standard
deviation of the noise, and ϵ represents a very small constant.
Table I summarizes the quantitative results for these metrics.
The data clearly show that our method outperforms existing
approaches in terms of SNR, CNR and NIQE, and ranks
among the top three in AG.

AG = (

N∑
i=1

M∑
j=1

√
(∇ix)2 + (∇jx)2)/(M ∗N) (13)

SNR = 10 ∗ log(meansignal/(stdnoise + ϵ)) (14)

CNR = 10 ∗ log((mean1 −mean2)/(stdnoise + ϵ)) (15)

TABLE I
QUANTITATIVE COMPARISONS (SNR, NIQE, AG, LPIPS,CNR) OF

DIFFERENT METHODS ON THE en face µOCT DATASETS. THE TOP THREE
RESULTS ARE HIGHLIGHTED IN RED.

Method SNR↑ NIQE↓ AG↑ LPIPS↓ CNR↑
Original 30.78 10.4673 132.00 - 16.90
He [16] 12.49 10.9743 151.97 0.2210 -62.52
Clahe [20] 28.26 10.9733 142.78 0.0368 14.96
Entropy [37] 25.96 10.3081 143.42 0.1723 -17.34
ZeroDce [27] 24.76 10.6654 138.54 0.0893 9.71
ZeroDce++ [27] 28.22 10.6227 135.38 0.0447 10.59
RRDNet [28] 27.10 10.5193 140.58 0.0288 13.58
SCI [31] 27.87 11.4727 166.67 0.0986 9.23
Base [35] 55.20 11.1965 138.32 0.1577 47.99
Dif-NIR 58.99 9.0553 147.50 0.1382 49.56

3) Qualitative Comparison: As shown in Fig. 3 and 4,
traditional methods tend to result in over-enhancement, with
inadequate control over contrast. Although deep learning-
based approaches are more effective in adjusting overall
brightness, they often introduce noticeable noise. In Fig. 5,
we present the enhanced images of polystyrene microspheres
embedded in mixing epoxy glue, together with the gradient
contrast within the microspheres and the noise regions, from
which the above conclusions can be drawn more easily. In
comparison, the method proposed in this study demonstrates
significant advantages in noise suppression, preservation of im-
age gradient fidelity, and improvement of image illumination.

VI. DISCUSSION

A. Ablation Study

1) The Role of Pixel Value: Fig. 6 illustrates the results of
experiments comparing the use of only image coordinate infor-
mation in the INR with those that also incorporate the residual
error of the grayscale value at the current coordinate. Subse-
quently, we introduced a second branch that independently
inputs pixel values, and we evaluated performance metrics
under various weight configurations for the two branches, as
detailed in Table II. The results demonstrate that incorporating
pixel value information significantly enhances the restoration

Fig. 3. Visual comparisons of different methods on orange pulp images. The grayscale range of all images is linearly scaled to 0-255. (a)Input; (b)He;
(c)Clahe; (d)entropy; (e)ZeroDce; (f)ZeroDce++; (g)RRDNet; (h)SCI; (i)Base; (j)Dif-NIR
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Fig. 4. Visual comparisons of different methods on chicken lungs images. The grayscale range of all images is linearly scaled to 0-255. (a)Input; (b)He;
(c)Clahe; (d)entropy; (e)ZeroDce; (f)ZeroDce++; (g)RRDNet; (h)SCI; (i)Base; (j)Dif-NIR

Fig. 5. Visual comparisons of different methods on polystyrene microsphere images. As can be seen from the figure, Dif-NIR clearly demonstrates superior
performance in SNR and fidelity, effectively suppressing noise enhancement.The grayscale range of all images is linearly scaled to 0-255. (a)Input; (b)He;
(c)Clahe; (d)entropy; (e)ZeroDce; (f)ZeroDce++; (g)RRDNet; (h)SCI; (i)Base; (j)Dif-NIR

Fig. 6. The role of pixel values in the network. Absence of pixel values
as input leads to a smoother enhanced image with loss of texture details,
whereas providing grayscale values significantly improves texture restoration.
(a)Original image; (b) Grayscale colormap of the original image; (c) Grayscale
colormap of the enhanced image without pixel value input; (d) Grayscale
colormap of the enhanced image with pixel value input

of the image’s original gradient details. Moreover, when the
weights are appropriately adjusted, the second branch further
improves the image quality, enabling the preservation of even
more fine-grained details.

TABLE II
THE PERFORMANCE METRICS UNDER DIFFERENT WEIGHT ASSIGNMENTS

FOR THE TWO BRANCHES WERE EVALUATED. THE BEST RESULTS ARE
MARKED IN BOLD.

Weight SNR↑ NIQE↓ AG↑ LPIPS↓ CNR↑
a = 1, b = 0 56.51 9.0633 147.34 0.1390 43.67
a = 0.9, b = 0.1 58.99 9.0553 147.50 0.1382 49.56
a = 0.7, b = 0.3 58.30 9.0342 148.67 0.1391 49.44
a = 0.5, b = 0.5 58.19 9.0037 147.80 0.1389 49.20
a = 0.3, b = 0.7 57.63 8.949 145.40 0.1395 46.88
a = 0.1, b = 0.9 55.93 8.966 139.75 0.1431 42.35

2) Contribution of Each Loss.: Table III summarizes the
impact of each loss function by removing different loss terms.
Quantitative results show that progressively refining the loss
design leads to optimal LPIPS, NIQE, and CNR. Introducing
Ltv significantly improves AG, indicating that constraining
illumination smoothness effectively preserves the inherent con-
trast of image regions. Adding Lg regularization slightly re-
duces SNR and AG, as the exposure constraint helps maintain
a brightness distribution closer to human visual perception.
Finally, Lp loss further boosts SNR and CNR by introducing
a noise suppression mechanism. Although Lexp’s functionality
remains challenging to evaluate through standard metrics, we
have additionally presented its performance variations under
different hyperparameters in Fig. 7. This confirms that multi-
loss synergy uniquely enables balanced enhancement across
detail preservation, noise suppression, and exposure control.

TABLE III
CONTRIBUTIONS OF EACH LOSS.

Lspa Lspa+
Ltv

Lspa +
Ltv +
Lexp

Lspa + Ltv +
Lexp + Lg

Lspa + Ltv +
Lexp + Lg +

Lp

SNR ↑ 53.03 44.99 54.75 54.04 58.99
AG↑ 107.84 151.21 152.97 146.22 147.50

NIQE↓ 8.6624 9.177 9.1948 9.2213 9.0553
LPIPS↓ 0.2701 0.1687 0.1769 0.1485 0.1382
CNR↑ 31.47 33.10 40.66 44.69 49.56
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Fig. 7. Overview of the effect of the hyperparameter in the exposure loss
term on the brightness of the output image. The brightness hyperparameters
used in (a), (b), and (c) are set to 0.1, 0.5, and 0.9, respectively.

B. Migration Verification

In this section, the capability of the proposed network is
further validated through the acquisition of B-scan images of
transparent adhesive tape, which is a material with a highly
reflective surface. As shown in Fig. 8, images captured under
normal illumination and reduced exposure time are presented
in Fig. 8a and Fig. 8b, respectively. Comparable brightness
levels are observed in the surface layer of both images.
However, a gradual decline in clarity and a loss of fine details
with increasing imaging depth are observed in Fig. 8b, which
cannot be resolved through threshold selection. In Fig. 8c and
Fig. 8d, brightness in the dark regions of low-light images
is effectively enhanced by the network, revealing additional
structural details. Furthermore, by modifying the loss function
Lexp within the network, precise control over brightness levels
is achieved.

Fig. 8. Effect of Dif-NIR on the B-scan images of transparent adhesive tape.
(a) and (b) represent images acquired under normal illumination and reduced
exposure time, respectively, while (c) and (d) show the results of network
enhancement with different brightness settings.

Furthermore, the proposed network was validated in both
invisible low-illumination chicken lung images and retinal
images captured by other OCT devices. As shown in Fig. 9, an
extremely low signal image (Fig. 9a) was acquired by reducing
the exposure time, where almost no tissue structures were
visible. In contrast, the restored result (Fig. 9b) demonstrates
adequate illumination and clear structural details. For the
retinal image in Fig. 9c, the choroid layer exhibits weak
signals due to optical signal attenuation, while the restored
version (Fig. 9d) shows enhanced visibility of the choroid.
Furthermore, brightness enhancement appears to improve layer
delineation in retinal images. Table IV summarizes the quan-
titative metrics of both the original and enhanced images on
the retinal dataset, further demonstrating the superiority of our
method.

TABLE IV
QUANTITATIVE ASSESSMENT ON THE RETINAL DATASET.

SNR↑ AG↑ NIQE↓ CNR↑ LPIPS↓
Input 35.41 98.55 5.5227 61.02 -

Output 37.75 106.45 5.0026 64.70 0.0447

Fig. 9. Network validation in invisible low-light image of chicken lungs
and retinal cross-sectional imaging. (a) Chicken lung image captured under
extremely low-light conditions; (b) Enhanced chicken lung image; (c) Retinal
image captured under low-light conditions; (d) Enhanced retinal image.

VII. CONCLUSION

To address the challenges of unpredictable brightness degra-
dation in en face vis-µOCT images, we propose Dif-NIR, a
zero-shot enhancement framework integrating denoising and
enhancement. The network processes input images sequen-
tially through a frozen PDM and an IEM. The IEM, guided by
carefully designed loss functions, enables zero-shot training.
We perform quantitative and qualitative comparisons with ex-
isting methods on a self-constructed en face vis-µOCT dataset.
The results demonstrate that Dif-NIR outperforms current
approaches in both metrics and visual quality. Furthermore,
we evaluated the generalizability of the proposed network
by applying it to B-scan images and retinal images acquired
from other OCT devices. The results indicate that our method
remains effective on both of them. In particular, since the
network does not rely on dataset-specific training or weight
tuning, it exhibits strong generalization ability and holds
promise for broader applicability. In summary, the proposed
framework improves both en face and B-scan images under
low-light conditions and demonstrates robust generalization
across different OCT modalities and imaging systems. This
work offers a deep learning-based solution to enable the ap-
plication of OCT systems in low-light conditions, particularly
in settings involving low-cost, low-efficiency detectors or high-
speed imaging.
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