Journal of

Imaging

Review

A Review of Application of Deep Learning in Endoscopic
Image Processing

Zihan Nie 200, Muhao Xu "2, Zhiyong Wang 2, Xiaoqi Lu 12 and Weiye Song 1%*

check for
updates

Citation: Nie, Z.; Xu, M.; Wang, Z.;
Lu, X.; Song, W. A Review of
Application of Deep Learning in
Endoscopic Image Processing. J.
Imaging 2024, 10, 275. https://
doi.org/10.3390/jimaging10110275

Academic Editor: Nikolaos

Mitianoudis

Received: 28 September 2024
Revised: 24 October 2024
Accepted: 29 October 2024
Published: 1 November 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons
Attribution (CC BY) license (https://

creativecommons.org/licenses /by /
4.0/).

School of Mechanical Engineering, Shandong University, Jinan 250061, China;
202414371@mail.sdu.edu.cn (Z.N.); yynmhxu@hotmail.com (M.X.); wzy2021@mail.sdu.edu.cn (Z.W.);
17604135762@163.com (X.L.)

Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education,
Shandong University, Jinan 250061, China

Correspondence: songweiye@sdu.edu.cn

Abstract: Deep learning, particularly convolutional neural networks (CNNs), has revolutionized
endoscopic image processing, significantly enhancing the efficiency and accuracy of disease diagnosis
through its exceptional ability to extract features and classify complex patterns. This technology
automates medical image analysis, alleviating the workload of physicians and enabling a more
focused and personalized approach to patient care. However, despite these remarkable achievements,
there are still opportunities to further optimize deep learning models for endoscopic image analysis,
including addressing limitations such as the requirement for large annotated datasets and the chal-
lenge of achieving higher diagnostic precision, particularly for rare or subtle pathologies. This review
comprehensively examines the profound impact of deep learning on endoscopic image processing,
highlighting its current strengths and limitations. It also explores potential future directions for
research and development, outlining strategies to overcome existing challenges and facilitate the
integration of deep learning into clinical practice. Ultimately, the goal is to contribute to the ongoing
advancement of medical imaging technologies, leading to more accurate, personalized, and optimized
medical care for patients.
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1. Introduction

With the rapid development of technology, deep learning (DL) has demonstrated
its transformative potential in various fields. From intelligent transportation systems
(ITSs) to environmental monitoring, deep learning has not only improved the efficiency
of traditional processing methods but also promoted the development of automation and
intelligence [1,2]. These advances not only bring new opportunities to specific fields but
also lay the foundation for the development of future cross-domain intelligent systems.

In modern medicine, endoscopy has become an increasingly vital tool, significantly
enhancing the precision and efficiency of early disease diagnosis and treatment through
direct visualization of internal organs [3]. Its applications in fields such as the digestive,
respiratory, and urinary systems have made it a crucial method for both diagnosis and
treatment. Endoscopic technology not only enables real-time observation of internal organs
but also allows for the evaluation of lesions by imaging biological tissues, providing more
accurate diagnostic information [4]. With the rapid advancements in endoscopy, the amount
of data generated is also increasing, making efficient processing and analysis of this data
essential for improving diagnostic accuracy and treatment outcomes. However, traditional
image processing methods often suffer from slow speeds and limited accuracy, reducing
their effectiveness in handling complex medical data [5].

To address these challenges, researchers have increasingly turned to deep learning
technologies for endoscopic image analysis, significantly improving both efficiency and
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accuracy. Convolutional neural networks (CNNs), in particular, have brought revolutionary
improvements to image analysis by mimicking the brain’s processing mechanisms. CNNs
automatically learn and extract key features from images, enabling efficient and high-
precision analysis [6]. This technology has enhanced capabilities in image segmentation,
classification, and anomaly detection, reducing the workload for physicians. Computer-
aided detection (CAD) and computer-aided diagnosis (CADx) can find or localize abnormal
or suspicious areas in structural images, assisting doctors in making faster and more
accurate decisions [7].

The quality of images is crucial to the success of deep learning-based analysis and
diagnosis. In recent years, several studies have focused on enhancing the quality of
endoscopic images using deep learning techniques such as image enhancement, noise
removal, and resolution improvement. For instance, certain algorithms are able to create
high-quality synthetic medical images or generate missing information, thereby improving
diagnostic accuracy [8]. This not only enhances the quality of endoscopic examinations but
also reduces the need for repeated procedures, lowering medical costs.

The advances in deep learning technology have also paved the way for personal-
ized medicine. By utilizing deep learning models, researchers can develop more accurate
diagnostic tools that provide tailored treatment recommendations based on a patient’s
specific condition. These innovations not only improve treatment outcomes but also
optimize resource use [9]. As artificial intelligence continues to evolve, future endo-
scopic examinations are expected to become increasingly intelligent, not only through
enhanced image analysis but also via data integration and comprehensive analysis, al-
lowing for personalized medical services, health risk predictions, and tailored preventive
measures [9-11].

In this paper, we review the application of deep learning technology in endoscopic
image analysis. Since deep learning has made significant breakthroughs in image recog-
nition, it has been widely adopted in medical imaging, particularly in feature extraction,
disease diagnosis, and image enhancement for endoscopic images. We explore in detail the
central role of CNNs in improving disease detection accuracy and processing efficiency,
as well as how deep learning reduces physicians” workload through automated analysis,
improving the detection and classification of lesions. Additionally, this paper reviews
recent advances in deep learning for image quality enhancement, dynamic tracking, and
three-dimensional reconstruction, discussing how these technologies can support clinical
diagnosis and treatment. Through this analysis, we aim to demonstrate the potential of
deep learning to further advance endoscopic technology and provide insights for future
research directions.

2. Related Surveys

Several review papers delve into the intersection of artificial intelligence (Al), particu-
larly deep learning, with gastrointestinal endoscopy and broader medical image analysis.
Each provides valuable insights, although with differing scopes and focuses.

Shen et al. [7] provide a foundational overview of deep learning in medical imaging,
including architectures such as CNNs and generative models. Alagappan et al. [10] adopt
a forward-looking perspective, predicting the transformative impact of Al on gastroin-
testinal endoscopy. Choi et al. [8] examine the role of convolutional CNNs in endoscopic
imaging, particularly for polyp detection and classification. Their review emphasizes the
technical development and challenges related to CNN applications in diagnostic imaging.
Pannala et al. [9] emphasize the real-time potential of Al, particularly through computer-
aided detection (CADe) systems that aim to improve adenoma detection rates.
Zhuang et al. [12] offer a focused examination of deep learning applications within digestive
system imaging, analyzing recent advances.

Across these reviews, several common limitations emerge. None comprehensively
tackle the full spectrum of challenges associated with deep learning integration in clinical
workflows. Additionally, key technical aspects like super-resolution, noise reduction, and
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cross-modality integration—essential for achieving higher diagnostic accuracy—are either
mentioned briefly or overlooked. Many reviews also focus narrowly, either on future
potentials or current applications, without sufficiently bridging the gap between recent
research advancements and the practical strategies needed for clinical adoption. This leaves
aneed for more holistic perspectives that encompass both technical progress and real-world

challenges. Table 1 shows the comparison of the reviews.

Table 1. Comparative overview of review papers.

Review Paper

Focus

Strengths

Gaps

How This Review Fills the
Gap

Shen et al. (2017) [7]

Alagappan et al.
(2018) [10]

Choi et al. (2020) [8]

Pannala et al.
(2020) [9]

Zhuang et al.
(2023) [12]

Deep learning in
medical imaging

Future trends in Al
for endoscopy

CNN-based
endoscopic imaging

Practical Al in endoscopy

Digestive system
image processing

Provides a comprehensive
overview of deep
learning models

Predicts future Al impacts

Highlights polyp
detection and
technical evolution

Emphasizes real-time
CADe systems

Focused review of deep
learning in
digestive imaging

Insufficient focus on
real-time endoscopic
applications

Limited focus on current
optimization strategies

Limited scope to
segmentation and
polyp detection
Lacks discussion on
super-resolution
and denoising

Limited cross-
disciplinary scope

Addresses endoscopy-specific
challenges like real-
time processing
Bridges research
advancements with clinical
implementation
Addresses advanced
optimizations like
noise reduction

Incorporates advanced image
enhancement strategies

We integrate insights
across broader
endoscopic applications

3. Literature Review
3.1. Endoscopic Imaging Technology

Endoscopic imaging technology is a core tool in modern medical diagnosis, enabling
doctors to directly visualize internal structures of the human body through minimally
invasive or non-invasive methods. These technologies are crucial for early disease diag-
nosis, treatment monitoring, and surgical navigation. Below are five common endoscopic
imaging techniques.

3.1.1. White Light Endoscope (WLE)

White light endoscopes (WLEs) are the most widely used endoscopes, utilizing tradi-
tional white light illumination to provide high-definition views of the surface structures
within body cavities such as the digestive and respiratory tracts. The fundamental princi-
ples of white light endoscopy were first established through early studies, including those
related to digestive tract diseases [13]. In recent years, WLE technology has continued
to evolve, with advancements such as high-resolution endoscopes and video endoscopy
systems, which enhance image resolution and detail. For example, modern high-definition
WLESs can more accurately detect small lesions, such as intestinal metaplasia [14]. Addi-
tionally, combining WLEs with computer-aided diagnostic (CAD) systems that implement
discriminant analysis of pit patterns, using quantitative features from training images, has
improved the accuracy and efficiency of lesion detection [15].

3.1.2. Intravascular Ultrasound (IVUS)

Intravascular ultrasound (IVUS) involves inserting an ultrasound probe into blood
vessels to obtain images of the vessel walls and surrounding tissues, and is widely used
to evaluate atherosclerosis and guide endovascular procedures. This technology has been
recognized by the Society for Cardiac Angiography and Interventions [16]. With ongoing
technological advancements, IVUS now offers improved image quality and expanded
applications. High-frequency and three-dimensional IVUS enhance the resolution and
accuracy of plaque analysis. For instance, high-frequency IVUS provides finer details
of vascular structures, helping doctors better assess plaque composition [17]. Moreover,
combining IVUS with other imaging modalities, such as optical coherence tomography
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(OCT), has further improved the evaluation of spontaneous coronary artery dissection and
characterization of atherosclerotic plaques [18,19].

3.1.3. Endoscopic Ultrasound (EUS)

Endoscopic ultrasound (EUS) combines endoscopy and ultrasound to obtain high-
resolution images from within the body. It is particularly useful for diagnosing diseases
of the gastrointestinal tract and adjacent structures, such as pancreatitis or pancreatic
cancer [20]. Recent advancements in EUS include elastography, where a transducer sends a
shear wave through the pancreas and generates an elastogram by calculating the velocity
of the wave passing through soft tissues [21].

3.1.4. Optical Coherence Tomography (OCT)

OCT uses light waves for cellular-level imaging, commonly applied in ophthalmology
and cardiovascular diagnostics. OCT can generate microscopic three-dimensional images
of tissue structures, aiding doctors in assessing pathological changes. First proposed
by Huang et al. in 1991 [22], OCT has recently been adapted for endoscopic use. For
example, wide-field OCT in endoscopy now provides high-resolution images over larger
fields of view through improvements in optical design and data processing [23]. The latest
advancements, such as optical coherence tomography angiography (OCT-A), show great
potential for endoscopic applications [24].

3.1.5. Narrow-Band Imaging Endoscopy (NBI)

Narrow-band imaging (NBI) uses filtering technology to enhance endoscopic imaging
by isolating specific blue and green wavelengths. This technology produces images with
unique color distributions, aiding in the visualization of tissue structures [25]. NBI has
made significant strides, especially in the early detection of gastrointestinal cancers [26].

Together, these endoscopic imaging technologies offer detailed internal views for
various clinical scenarios, significantly improving the efficiency and accuracy of disease
diagnosis and treatment. As technology continues to advance, these imaging techniques
will play an even greater role in medical diagnostics.

3.2. Deep Learning Models

In medical image analysis, deep learning technologies, especially convolutional neural
networks (CNNs)—have demonstrated tremendous potential. Deep learning mimics the
human brain’s ability to process complex data, such as images and sounds [27,28]. CNNs,
with their multi-layer convolutional structures, automatically extract features from raw
images. Convolutional layers use learnable filters (kernels) to capture local image features,
while pooling layers reduce the size of feature maps to decrease computational complexity
and retain essential information [29]. Non-linear activation functions (e.g., ReLU) further
enhance the model’s ability to recognize complex patterns [27].

In endoscopic image analysis, CNNs’ automatic feature learning greatly improves the
efficiency and accuracy of image processing. Studies have shown that CNNs can effectively
perform tasks such as polyp detection, lesion classification, and region recognition. For
example, a hybrid model combining CNNs with Swin Transformers was able to automati-
cally segment polyps by learning from annotated endoscopic images, demonstrating high
efficiency and accuracy when analyzing new images [30].

Additionally, deep learning has proven valuable in enhancing image quality, an im-
portant factor in improving the diagnostic value of endoscopic images. For example, using
ImageNet-based technologies, researchers have improved image contrast and resolution,
leading to better visualization of details and abnormalities [29]. EndoL2H, a model combin-
ing conditional adversarial networks with spatial attention, has been developed to achieve
super-resolution endoscopic imaging, further enhancing diagnostic accuracy [31]. Deep
learning-based denoising techniques have also shown excellent performance in reducing
noise, advancing endoscopic image processing technology [32].
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As CNN architectures and learning algorithms continue to be optimized, the accu-
racy and efficiency of endoscopic image analysis improve. For instance, deep residual
networks (ResNet) have enhanced the training stability and performance of CNNS, yielding
promising results in practical applications [33]. Multi-scale feature fusion and attention
mechanisms have also contributed to better capturing subtle changes in endoscopic im-
ages [34].

Transfer learning techniques are another area of progress. By employing nucleus-
centered image block sampling strategies and combining the classification results of mul-
tiple image blocks, researchers have improved robustness and accuracy in endoscopic
image classification [35]. CNNs, therefore, play a pivotal role in improving image quality,
detecting small lesions, and assisting doctors in making more accurate diagnoses [36,37].

In summary, the application of deep learning in endoscopic image analysis not only
increases the automation level of image processing but also accelerates advancements
in medical diagnostic technology. Continuous development and optimization of these
technologies offer more accurate diagnostic support to clinicians, aiding early disease
detection, treatment planning, and treatment monitoring [36].

3.3. Application of Deep Learning in Endoscopic Image Processing

To help readers quickly grasp the latest developments in deep learning in endoscopic
image processing, Table 2 is an overview table showing the various application areas and
their most popular models.

Table 2. Overview of Applications and Popular Models.

Application Popular Models Key Advances

Early cancer detection [38]

U-Net Polyp segmentation [39]

Image segmentation

SegNet Bleeding area monitoring [40]
o ResNet-50 GERD classﬂlcat.lon [41]
Image Classification Nasopharyngeal malignancy [42]
FCN .
Early gastric cancer [43]
Super-resolution [31]
CNNs . .
Image Enhancement EndoLoH Multi-image fusion [44]
Low-light enhancement [45]
Dynamic Tracking Polyp detgc.tlop [46]
and Analysis SegNet Tumor classification [47]
Surgical instrument tracking [48]
SuperPoint Colonoscopy reconstruction [49]
3D Reconstruction perte Real-time 3D surface filling
Multi-view

Tracking adaptive algorithms

3.3.1. Image Segmentation

Image segmentation is one of the core applications of deep learning in medical image
analysis. Identifying and extracting specific regions or structures in images significantly
improves the accuracy and efficiency of medical diagnosis. Deep learning models, espe-
cially CNNs, have been widely used in various medical image segmentation tasks, such
as retinal layer segmentation, lung nodule detection, and cardiac image analysis. For
example, a retinal segmentation method demonstrates the practicality of the model in
processing actual medical images, especially in clinical environments where fast feedback
is required, and efficiency improvement is crucial [50]. Another study proposed a CNN
model optimized by multi-granularity visual features, which has made significant progress
in improving the accuracy and speed of retinal layer segmentation [51]. The fusion of
multi-granular features not only enhances the recognition ability of the model but also
provides new perspectives for processing information at different levels. These medical
image segmentation techniques provide valuable ideas and references for the segmentation
of endoscopic images, laying the foundation for future work in this area.
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In the field of gastrointestinal endoscopic image segmentation, deep learning technol-
ogy has made substantial progress. In a review of the detection of precancerous lesions
in upper gastrointestinal endoscopy, CNNs and transfer learning techniques were shown
to be highly effective, with different models being evaluated for their efficacy in diag-
nosing precancerous lesions, thus highlighting the potential of deep learning in early
cancer diagnosis [38]. This evaluation provides practical guidance for model selection in
clinical practice.

The DeepPoly model uses a DoubleU-Net architecture which stacked one U-net net-
work on another U-net network to perform polyp segmentation and classification. This
approach efficiently utilizes semantic information to optimize the segmentation of different
objects in medical images, achieving a mean dice-coefficient of 0.834 and 0.956 in seg-
mentation for the Endotech challenge and Kvasir-SEG dataset [39]. This method, trained
on a large-scale colonoscopy image dataset, demonstrates that the performance of deep
learning models is closely tied to dataset size. Transfer learning alleviates the problem of
insufficient data while maintaining high-precision detection effects. Using step-by-step
transfer learning and five independent endoscopy datasets, a computer-assisted system
was used to characterize tissues in NBI zoom images in Barrett’s esophagus. The results
overlapped with the expert ground truth, and the soft and sweet spot delineation scores
reached 98% [52]. This result shows that transfer learning can maintain the detection
accuracy of the model under limited data conditions, providing an effective solution for
actual clinical applications.

Another example is a deep learning method based on UNet++ and VGG-16, used
for accurately delineating the resection margins of early gastric cancer. By improving
the accuracy testing method, which reconstructs the results on the endoscopic image
and analyzes the distances between point pairs, this method significantly improved the
delineation accuracy of the resection margin [53]. This progress reflects the importance of
adaptability and flexibility in deep learning models, especially as application scenarios
in medical imaging expand. The representative images of the resection extent are shown
in Figure 1.

Figure 1. Representative images of the resection extent. (a) ENDOANGEL delineates the resection
extent in the CE images. (b) ENDOANGEL delineates the resection extent in the WLE images. The
dark dotted line is the predicted resection margin predicted. The light dotted line is the resection
margin delineated by the expert (all images taken from [53]).

In addition, a semantic segmentation model based on SegNet, which is known for
its high internal efficiency, has been applied for the detection of bleeding areas in capsule
endoscopy images. Unlike traditional networks that output images in RGB, this model
produces multiple channels for enhanced image interpretation. The training images were
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labeled with three classes—bleeding, non-bleeding, and background—and the model
significantly improved the detection accuracy of bleeding areas [40], demonstrating the
potential of deep learning in processing complex medical images.

In respiratory endoscopic image analysis, a fully automatic vocal fold segmentation
system based on deep learning maps three-channel RGB images into distance maps for
training. This system analyzes vocal cord motion behaviors captured using flexible endo-
scopes with low-speed capability, segmenting the vocal cords and glottis areas in transnasal
flexible laryngoscopy videos. The segmentation accuracy of this method reaches 0.9469,
which is higher than 0.7358 of the encoder-decoder method [54]. This study reveals the
significant potential of deep learning in deepening our understanding of complex physio-
logical structures. Another study focused on the segmentation of airways and obstructive
factors in endoscopic imaging, providing valuable insights for diagnosing and treating
obstructive sleep apnea (OSA) [55]. However, the limited number of images in the test set
may affect the generalizability of the model.

Though deep learning can perform image segmentation for various human endoscopy
images, the occlusion of human tissues and organs by medical devices will affect the
analysis and judgment when performing image analysis. For accurate segmentation of
surgical instruments, DRR-Net, a dense-connected residual recurrent convolutional net-
work, has been shown to perform well in instrument recognition within complex back-
grounds [56]. This network adds Recurrent Neural Network (RNN) blocks and Adaptive
Dilated Recurrent Convolutional Block (ADRCB) blocks to the traditional U-Net network
backbone, allowing for time series analysis of video data. By combining data from previous
frames and learning long-range context information, DRR-Net reflects the potential of deep
learning to improve surgical safety and precision in real-world surgical scenarios. This
feature suggests that the model can be integrated with a robotic system in the future to
achieve fully autonomous surgical operations. Moreover, complex medical imaging envi-
ronments can also pose challenges for image analysis. EndoUDA is a modality-independent
deep learning segmentation method that leverages adaptive techniques and a joint loss
function to improve generalization across different target domains, showing strong po-
tential for wide-ranging applications in various endoscopic image modalities [57]. This
research highlights deep learning’s ability to find effective solutions across diverse medical
imaging environments.

Artifact detection and segmentation are important challenges in deep learning applica-
tions. Artifacts are fundamental yet unavoidable problems in endoscopy, often complicating
the detection of tissue abnormalities. Therefore, research on accelerating the identification
of these categories and restoring frames is crucial [58]. An improved Cascade R-CNN
model, combined with a feature pyramid network (FPN), has been employed for multi-
class artifact detection. This combination improves the trade-off between mean average
precision (mAP) and intersection over union (IoU), effectively enhancing artifact recogni-
tion and segmentation accuracy [59]. These studies highlight the importance of developing
specialized techniques to handle artifacts, which in turn enhances the overall image quality
and diagnostic level in endoscopy.

While expanding the types of segmentable images, it is also crucial to improve the
integration of tasks. Multi-task deep learning models have also gained widespread use.
A multi-task model that combines classification, image retrieval, and segmentation func-
tions utilizes a mutual attention module to capture more diverse features during the
segmentation task, significantly improving the accuracy and efficiency of endoscopic image
analysis [60]. This type of multi-task learning approach not only enhances the overall
performance of the model but also reduces the time and data required for training. Another
model, DSI-Net, combines classification and segmentation tasks, significantly improving
the multi-task processing capability of endoscopic images through deep collaborative in-
teractive networks and attention mechanisms [61]. An example of DPENet segmentation
results is shown in Figure 2.
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Figure 2. Example of DPENet segmentation results. White area: lesion. Black area: background.

(a) The data collected by endoscopes (b) ground truth, (c) segmentation results of DSI-Net (all images
taken from [61]).

In summary, these research findings demonstrate that the application of deep learning
in endoscopic image segmentation not only improves the accuracy of lesion detection
and segmentation but also drives the overall progress of endoscopic technology. The
continuous development and application of these technologies provide robust support for
clinical diagnosis and treatment, underlining the crucial role of deep learning in medical
image analysis.

3.3.2. Image Classification

The application of deep learning techniques in endoscopic image classification has
made significant progress. These techniques not only enhance the efficiency of diagnosis
but also expand the scope of application for endoscopic technology. In the field of deep
learning-based endoscopic image classification, CNNs have shown great potential [62].

For example, in the classification of gastroesophageal reflux disease (GERD), re-
searchers designed a CNN architecture with high generalization ability, using a pre-trained
model and applying dynamic data augmentation to the training set. This model classified
GERD according to the Los Angeles classification (LA grade) system, achieving an accuracy
of 89.3% [41]. The high generalization ability of the model was enhanced by the use of
a data augmentation technique, a two-stage no-freezing fine-tuning policy, and an early
stopping criterion technique [63].

Accurate detection of abnormalities is essential for effective diagnosis and treatment in
medical imaging. A study utilized deep learning models consisting of a fully convolutional
network based on the inception architecture to detect nasopharyngeal malignancies and
verified the effectiveness and reliability of the model in real clinical settings, achieving an
accuracy of 88.7% on the test set—7.5% higher than the expert in the prospective comparison
phase [42]. Representative images of nasopharyngeal masses of different types are shown
in Figure 3. The success of this study highlights the maturity of deep learning technology
in the analysis of various endoscopic images and suggests that it may become a routine
diagnostic tool in the future.
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Figure 3. Representative images of nasopharyngeal masses. (a) Normal (adenoids hyperplasia);
(b) nasopharyngeal carcinoma; (c) fibroangioma; (d) malignant melanoma (all images taken from [42]).

Another study developed a guided attention deep network based on ResNet-50 which
combined a lightweight attention module and multi-scale feature extractor with U-Net.
By extracting image features at different scales, the model significantly improved the
recognition ability for early gastric cancer, achieving a classification accuracy of 92.2% [43].
However, this method’s data processing range remains somewhat limited, and its recogni-
tion ability may be constrained when dealing with data from diverse regions. Ensemble
learning can deal with this problem of poor robustness, another study found that the per-
formance of pathological site classification could be enhanced through ensemble learning,
a method using multiple network architectures and CNNs of different depths to effectively
extract image texture features from input images. This technique not only compensates
for the biases of individual models but also reduces error rates by integrating the predic-
tion results of multiple models [64]. Building on this concept, Ghosh et al. (2023) further
demonstrated that ensemble learning can successfully classify features that were incorrectly
learned by individual base learners, improving accuracy to 95% [65].

Meanwhile, by adding a global spatial feature aggregation block to the ResNet-50
backbone, researchers were able to accurately aggregate spatial features, demonstrating
excellent classification performance [66]. This improvement is particularly important for
the positioning and analysis of complex tissues. In the future, it can be integrated with
the smart capsule endoscopy system to achieve non-invasive detection and monitoring. A
recent study by Mukhtorov et al. (2023) improved the transparency of endoscopic image
classification through the development of interpretable deep learning models. This inno-
vation is particularly important for enhancing clinicians’ trust in Al-powered diagnostic
tools [67].

In summary, the combination of different models and methods not only improves classifi-
cation accuracy but also broadens the potential for clinical application in endoscopic diagnosis.

3.3.3. Image Enhancement

Image enhancement is a crucial application of deep learning in medical image pro-
cessing, particularly in endoscopic image analysis. By improving the quality of images,
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enhancement techniques enable doctors to identify lesions more accurately, thereby increas-
ing diagnostic accuracy and efficiency. In recent years, significant progress has been made
in this field through deep learning methods.

For colonoscopy images, the endoscopic image enhancement network (EIEN) based on
Retinex theory has demonstrated successful illumination correction using a self-attention-
guided multi-scale pyramid network. This approach stretches the green and blue channels
in the reflection component and fuses the enhanced reflection component with the original
image through weighting, thereby maintaining both image fidelity and the contrast of
blood vessels and tissues [68]. However, this method relies on supervised training and
requires a large amount of labeled data support. To solve the problem of insufficient
labeled data, the application of unsupervised learning methods in image enhancement
is increasing. Unsupervised deep learning methods self-learn image features to improve
brightness and alleviate color distortion, providing important support for clinical decision-
making [69]. Another deep unsupervised method for endoscopic image enhancement
uses multi-image fusion technology to further improve image quality. This technique
converts three derivative images generated from different enhancement methods into the
HSI color space, then feeds the I channel image into the DerivedFuse network, which
employs a novel reference-free quality metric as its loss function. The network accurately
extracts and fuses features to enhance the intensity component of the original image. After
enhancement, doctors can select images based on different parameter settings to suit their
clinical needs [44], as shown in Figure 4. By fusing information from multiple images,
this method significantly improves image detail and contrast, providing clearer visual
information for doctors. The successful application of unsupervised learning highlights
deep learning’s potential in addressing the challenge of limited annotated medical data,
particularly when data labeling is insufficient.

Figure 4. The visual effect of different « (parameter variable in adaptive adjustment function for
changing saturation) values on image (all images taken from [44]).

Additionally, EndoL2H, a deep-learning-based super-resolution method for capsule
endoscopy images, further exemplifies the importance of enhancing low-quality medi-
cal images through advanced techniques. This framework combines a conditional GAN
with spatial attention to generate diagnostically relevant high-resolution images from
low-resolution counterparts, ensuring the preservation of critical texture and details, even
under extreme up-scaling factors. The system demonstrates excellent performance, with
significant improvements in PSNR and SSIM metrics under high scaling, thereby support-
ing early diagnosis through enhanced visual clarity. Its application underscores the value
of super-resolution in endoscopy, where limited resolution and image quality can hinder
diagnostic performance [31].

Additionally, deep learning models have been applied to low-light environments,
such as high-speed endoscopic videos, to improve image quality in complex conditions,
the improvement is significant in terms of PSNR and SSIM scores, reaching 23.79 dB and
0.88, respectively [70]. The novel deep pyramid enhancement network (DPENet), derived
from deep pyramid networks (DPNSs), integrates global and local features at various scales
through an image pyramid framework with three parallel branches. This method has
proven effective in enhancing image contrast and details under low-light conditions [45].
Visual results from the low-light image enhancement (LIE) methods applied to the dataset



J. Imaging 2024, 10, 275

11 of 19

are shown in Figure 5. In further developments, automated frameworks have been intro-
duced to streamline the restoration and enhancement of endoscopic images, ensuring fast
processing while meeting the demands of rapid clinical diagnosis [71]. Electromagnetic
interference noise removal is another key aspect of image enhancement, and researchers
have developed deep learning algorithms to effectively reduce noise and enhance image
clarity [72].

(@)

Figure 5. Visual results of LIE methods on the dataset. (a) Input image; (b) DPENet. In the blue and
red boxes are the corresponding DOI fields (all images taken from [45]).

(b)

Finally, the application of deep learning to early gastric cancer detection has fur-
ther demonstrated the practical value of image enhancement technology in clinical prac-
tice [73]. In the future, these models can be integrated into surgical navigation systems and
telemedicine platforms to provide real-time and accurate diagnostic support and help doc-
tors cope with complex lesion analysis tasks. By continuously optimizing model structures
and algorithms, researchers are advancing the field of medical image analysis, broadening
the future applications of deep learning in healthcare.

In summary, deep learning technology has made considerable progress in endoscopic
image enhancement. By combining various methods and technologies, researchers are
consistently improving image quality, diagnostic efficiency, and accuracy.

3.3.4. Dynamic Tracking and Analysis

Deep learning technology has shown tremendous potential for dynamic tracking and
analysis in endoscopic imaging, particularly in real-time monitoring and precise lesion
localization. As deep learning algorithms continue to evolve, researchers have significantly
enhanced the efficiency and accuracy of endoscopic image processing by developing
innovative models, offering more reliable support for clinical diagnosis and treatment.

In colonoscopy, real-time endoscopic image diagnosis support systems based on deep
learning have proven effective in identifying and classifying colon lesions. These systems
not only enhance physicians” work efficiency but also improve the detection rate of polyps
and other lesions, highlighting the value of deep learning in dynamic endoscopic track-
ing [46,74]. For gastric tumor detection, a deep learning-based clinical decision support
system (CDSS) was developed to automatically detect and classify tumors during real-time
endoscopy, assisting in diagnosis and invasion depth prediction, with a lesion detection
rate of 95.6% [47]. In the future, this system is expected to be further integrated into remote
consultation and robot-assisted surgery systems to promote the popularization and devel-
opment of high-quality medical services. Figure 6 presents representative identification
results generated by the CDSS.
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Figure 6. Representative examples of the clinical decision support system (CDSS). Green boxes show
polyps detected by algorithm. (all images taken from [47]).

In capsule endoscopy, an automatic detection system has been developed that identi-
fies abnormal lesions such as mucosal breaks, angioectasia, protruding lesions, and blood
content in real-time [75]. By integrating Single Shot MultiBox Detector (SSD) and ResNet50,
this system significantly improves the comprehensiveness of detection functions. Moreover,
deep learning models have demonstrated great effectiveness in the automatic detection of
early esophageal squamous cell carcinoma, with real-time monitoring and identification of
abnormal esophageal lesions, thereby improving early diagnosis accuracy [76].

Regarding dynamic tracking of surgical instruments, researchers have developed deep
learning-assisted robotic endoscope systems capable of tracking and locating surgical instru-
ments in real-time, improving both the safety and precision of surgical procedures [48,77].
These advancements collectively promote the progress of endoscopic technology.

In conclusion, the application of deep learning in dynamic tracking and analysis of
endoscopic images continues to evolve. By utilizing a range of deep learning models and
optimized methods, the efficiency of real-time analysis has been significantly improved,
offering valuable guidance for both diagnosis and surgical applications.

3.3.5. Three-Dimensional Reconstruction

Deep learning technology has shown great promise in the three-dimensional (3D)
reconstruction of endoscopic images. Converting two-dimensional (2D) image data into
3D models allows doctors to gain a more intuitive understanding of internal structures,
thereby supporting more accurate diagnoses and treatment planning and facilitating the de-
velopment of assistive tools for practitioners [78]. In recent years, significant advancements
in deep learning algorithms, particularly in CNNs and multi-view stereo vision technology,
have led to remarkable progress in 3D reconstruction research for endoscopic imaging.

Advancements in tracking adaptive algorithms have enhanced the accuracy of de-
tecting and matching feature points, optimizing 3D reconstruction with the improved
SuperPoint algorithm by designing a new tracking loss. This technology improves both
the speed and accuracy of endoscopic 3D reconstruction, providing doctors with real-time
3D image support, which increases the number of reconstruction points and improves
stability [78]. However, the robustness of the algorithm in dealing with occlusions and
missing areas still needs to be further improved.

To address this shortcoming, real-time colonoscopic 3D reconstruction technology has
greatly enhanced the accuracy and efficiency of colonoscopy by dynamically reconstructing
the 3D surface of the examined areas. This technology can effectively identify and fill in
missing areas in the image, optimizing the doctor’s field of view and improving operational
precision [49]. This is particularly advantageous when examining complex or abnormal
anatomical structures, where the ability to reconstruct in 3D provides irreplaceable benefits.
The results of the reconstruction are shown in Figure 7.
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Figure 7. Three-dimensional reconstruction for visualization of missing colonic surface (highlighted

in black in the last image, 25% surface), small colon pouches that are occluded by ridges. The missing
colonic surface is highlighted in black in the last image. (all images taken from [49]).

In summary, the application of deep learning in 3D reconstruction for endoscopic
images is continuously evolving. The integration of multiple techniques has significantly
improved both the accuracy and efficiency of these reconstructions. These technological
advancements not only offer new perspectives for endoscopic image analysis but also
provide more intuitive, real-time support for clinical applications.

4. Results
4.1. Summary of Findings

In this Results Section, we provide a comprehensive overview of the findings regard-
ing the application of Deep Learning (DL) in enhancing endoscopic image processing.
The results emphasize the positive impact of DL techniques across various applications,
highlighting their effectiveness in improving diagnostic accuracy and operational efficiency.
Table 3 shows the summary of findings on DL in endoscopic image processing.

Table 3. Summary of findings on DL in endoscopic image processing.

Findings Description

DL is utilized in various areas, including
classification, reconstruction, image
enhancement, segmentation, and real-time
pathology recognition across different types of
endoscopic procedures, such as gastrointestinal
and respiratory endoscopy.

Studies have shown that DL algorithms can
enhance accuracy rates in lesion detection,
particularly in identifying precancerous lesions
and small tumors.

DL systems have reduced the processing time
for real-time analysis, allowing clinicians to
make faster and more informed decisions
during procedures.

DL methods generally outperform traditional
algorithms, such as manual review and
Comparison with Traditional Methods conventional image processing techniques, in
terms of speed and accuracy, particularly in
polyp detection.

Enhanced image quality through techniques
like super-resolution has resulted in clearer
visualization of details, aiding in more
accurate diagnoses.

Application Areas

Performance Metrics

Impact on Workflow

Quality of Image Output

4.2. Strengths

In this section, we highlight the significant advantages and strengths of employing
DL in endoscopic image processing, underscoring its contributions to modern medical
diagnostics.Table 4 shows strengths of DL in endoscopic image processing.
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Table 4. Strengths of DL in endoscopic image processing.

Strengths

Description

Enhanced Diagnostic Accuracy

Automation of Image Analysis

Real-time Processing Capabilities

Adaptability and Continuous Learning

Potential for Personalized Medicine

DL techniques have been shown to
significantly improve diagnostic accuracy,
particularly in detecting early-stage
malignancies and subtle anatomical
abnormalities that might be overlooked by
human observers.

By automating repetitive tasks like image
segmentation and classification, DL reduces the
workload for clinicians, allowing them to focus
on patient care and complex decision-making.
DL systems facilitate real-time analysis, which
is critical during endoscopic procedures,
enabling immediate feedback and decision
support to clinicians.

Many DL models can adapt to new data inputs
and learn from ongoing clinical experiences,
improving their accuracy and reliability
over time.

With ongoing advancements, DL technologies
hold the promise of enabling personalized
medicine by tailoring diagnostic and
therapeutic approaches to individual
patient profiles.

4.3. Limitations

This section outlines the challenges and constraints observed in the application of DL
in endoscopic image processing. These limitations provide critical insights into areas that
require further research and improvement. Table 5 shows limitations of DL in endoscopic

image processing.

Table 5. Limitations of DL in endoscopic image processing.

Limitations Description
A major limitation is the high dependency on
large, annotated datasets for training DL
Data Dependency models. Many institutions face challenges in

Generalization Issues

Interpretability

Computational Requirements

obtaining sufficiently large and diverse
datasets, which may lead to biased
model performance.

DL models may struggle to generalize across
different endoscopic modalities and variations
in imaging protocols, which can affect
diagnostic accuracy when applied
to new settings.

The “black box” nature of DL algorithms
presents challenges in clinical settings, as
clinicians often find it difficult to interpret the
rationale behind Al-generated outputs, which
is crucial for making informed
medical decisions.

The computational resources needed for
training and implementing DL models are
substantial, often requiring advanced
hardware that may not be readily available in
all healthcare settings.




J. Imaging 2024, 10, 275

15 of 19

5. Discussion

The application of deep learning to endoscopic image processing represents a transfor-
mative advancement in medical diagnostics. Techniques based on convolutional neural
networks have significantly improved the resolution, clarity, and diagnostic accuracy
of endoscopic images. Through feature extraction, pattern recognition, and automated
segmentation, deep learning models are surpassing the limitations of traditional image
processing methods, offering faster and more reliable insights for clinical use.

Deep learning models, such as CNNs, excel at interpreting complex visual data, au-
tomatically identifying subtle patterns that may elude human perception. This capability
is especially valuable for detecting early-stage malignancies or subtle abnormalities that
could otherwise go unnoticed. The automation of detection and classification processes
minimizes the risk of human error, leading to more accurate diagnoses and improved clini-
cal outcomes. Furthermore, methods like EndoL2H leverage super-resolution techniques
to enhance image quality, ensuring that even low-resolution endoscopic images retain
diagnostically critical details [31]. Similarly, multi-image fusion approaches, as described
by Huang et al. (2022), improve image brightness and color accuracy through unsupervised
learning techniques, supporting enhanced visualization in clinical settings [64].

Despite these advancements, several challenges hinder the widespread adoption of
deep learning in clinical practice. A major concern is the computational demand required
to train and operate these models. Training deep networks requires substantial processing
power and large-scale datasets, which may not always be available in medical institutions.
This challenge is particularly relevant in healthcare settings where data scarcity is common,
making it difficult to train models effectively using supervised learning approaches. As
Hamid (2023) points out, data-centric Al approaches, which emphasize optimizing datasets
alongside models, are critical for addressing these limitations [79].

Another challenge lies in ensuring that deep learning models maintain robustness
across different clinical environments. Variability in endoscopic equipment, patient demo-
graphics, and imaging protocols can lead to domain shifts, which may negatively affect
model performance. Developing models that are generalizable and capable of maintaining
accuracy across diverse datasets remains a priority. Data-centric solutions, as emphasized
by Hamid and Braun (2019), suggest that focusing on creating adaptable, high-quality
datasets is essential for improving the scalability of Al models in healthcare [80].

Additionally, the “black box” nature of many deep learning models poses interpretabil-
ity challenges. In medical diagnostics, transparency and accountability are essential, as
clinicians need to understand the rationale behind Al-generated outputs to make informed
decisions. While interpretability-focused models, such as those developed by Mukhtorov
etal. (2023), provide some solutions, further research is needed to balance model complexity
with explainability [61].

Despite these challenges, the potential of deep learning to alleviate the workload of
clinicians is immense. Automating routine tasks allows healthcare providers to focus more
on patient care, ultimately improving the efficiency of healthcare delivery. By integrating
deep learning models into diagnostic workflows, clinicians can benefit from faster and
more precise diagnoses, leading to better patient outcomes. As advancements continue, the
field will need to prioritize both computational efficiency and transparency to ensure that
deep learning tools are seamlessly integrated into clinical practice.

In conclusion, while the integration of deep learning into endoscopic image analysis
holds great promise, addressing the challenges of computational demands, data scarcity,
and interpretability will be crucial for its success. By adopting strategies that balance
data-centric and model-centric approaches, researchers can develop more efficient and
adaptable models that meet the demands of modern healthcare systems [79,80].

6. Conclusions

This paper provides a comprehensive review of deep learning applications in endo-
scopic image processing, covering advancements in image enhancement, segmentation,



J. Imaging 2024, 10, 275 16 of 19

classification, dynamic tracking, and 3D reconstruction. Key contributions include em-
phasizing the impact of super-resolution and multi-image fusion techniques, exploring
unsupervised learning to address data scarcity, and highlighting model scalability across
diverse clinical settings.

The analysis identifies future directions, including developing lightweight, inter-
pretable models for efficient clinical use and exploring data-efficient techniques like domain
adaptation to address limited annotated datasets. By aligning emerging Al trends with
clinical needs, this work offers a roadmap for future research, aiming to enhance diagnostic
accuracy, improve patient care, and drive the integration of deep learning into routine
medical practice.
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