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A Framework with Multi-Scale Hybrid Mamba Voxel Flow for Video

Prediction
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Abstract—Video prediction is a critical task in video process-
ing and generation, with far-reaching implications for various
downstream applications. However, existing methods often pro-
duce blurred predicted frames and fail to maintain structural
continuity in objects. To address these challenges, we propose a
Multi-Scale Hybrid Mamba Voxel Flow framework that employs
a progressive refinement strategy in combination with adaptive
feature extraction modules. The framework begins by generating
coarse optical flow estimates and predicted frames, which are
progressively refined at lower resolutions to enhance detail
and ensure temporal coherence. Specifically, Mamba Blocks are
designed to capture complex global motion patterns, while Spatial
Aggregation Blocks aggregate spatial context across different
scales. Simam Modules further enhance feature representation
by selectively focusing on significant spatial regions. Additionally,
multi-level residual connections and depthwise channel sepa-
rations are incorporated to reduce computational complexity.
Experimental results show that the proposed method significantly
improves the clarity and spatial consistency of predicted frames,
outperforming state-of-the-art techniques.

Index Terms—Video prediction, Multi-Scale Hybrid, Mamba,
Voxel Flow.

I. INTRODUCTION

Video prediction [1]-[3] aims to estimate future frames
based on the current ones and holds substantial promise
for improving representational learning [4] while supporting
downstream tasks such as human motion forecasting [5], [6],
autonomous driving [7]-[9], and anomaly detection [10]. This
field has garnered growing attention in both academic and
industrial communities [11]-[13].

Despite its significance, video prediction faces significant
challenges posed by the diverse and complex motion pat-
terns in real-world scenarios. Accurate motion estimation is
essential for overcoming these challenges [14]-[17]. Early ap-
proaches primarily relied on recurrent neural networks (RNNs)
[19] for modeling temporal motion patterns. To achieve more
robust long-term predictions, some studies [18], [19] have
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incorporated semantic or instance segmentation maps to enable
semantically consistent motion estimation in complex scenes.
However, the practical availability of such segmentation maps
is often limited, which restricts the real-world applicability of
these approaches [15], [20], [21].

To overcome this constraint and minimize dependency on
extra inputs, the OPT method [22] achieved significant results
by leveraging only RGB images and estimating optical flow
using an optimization-based approach. However, it is difficult
to obtain pre-trained optical flow models and accurate optical
flow, which affects its applicability. The optimization method
based on VFI interpolation and extrapolation leads to huge
computational overhead. DMVFN [23] introduced dynamic
optical flow estimation to explicitly capture complex multi-
scale motion patterns between adjacent frames. It employs a
lightweight routing module that adaptively generates routing
vectors based on the input frames, dynamically selecting
sub-networks for efficient future frame prediction. However,
because the CNNs in DMVEN are limited by their local
receptive fields, their predictions for fast-moving objects often
become ambiguous [24]. Real-world video prediction tasks
often require the ability to manage substantial variations in
spatial resolution. While methods such as DMVEFN extract
multi-scale motion features using varying receptive fields, they
frequently struggle to preserve the structural continuity of
objects in their predictions.

To address these challenges, we propose a Multi-Scale
Hybrid Mamba Voxel Flow framework that aims to resolve
blurred predictions and maintain structural consistency in
objects. This framework models complex multi-scale motion
between adjacent frames through a progressive refinement
strategy, enabling efficient capture of broad displacements at
lower resolutions and successive refinement of subtle local
deformations at higher resolutions. It comprises a series of
sequentially stacked multi-scale Hybrid Mamba Voxel Flow
modules, each integrating a Mamba Block for global context
modelling with a Spatial Aggregation Block for local detail
enhancement. Mamba Block employs self-attention to capture
long-range dependencies across the entire frame, enabling the
model to relate distant regions and accurately infer broad mo-
tion patterns. Spatial Aggregation Block utilises a dual branch
residual convolution design to emphasise texture fidelity and
reinforce edge continuity, ensuring precise reconstruction of
subtle structures and object boundaries. The SimAM module
then adaptively fuses the global and local feature streams,
weighting them according to spatial salience, to produce coher-
ent and sharp frame predictions at all scales. Our experiments
on three established public benchmarks - Cityscapes [25],
KITTI [26], and UCF101 [27] - demonstrate that the proposed
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method achieves superior performance compared to state-of-
the-art video prediction approaches. Extensive ablation studies
further confirm the individual contribution of each framework
component to the overall prediction accuracy.

Our contributions can be summarized as follows:

e We propose a multi-scale Hybrid Mamba Voxel Flow
framework that employs a progressive refinement strategy
to capture complex multi-scale motion. We introduce the
Mamba Block, which leverages local self-attention to
effectively extract global motion information.

« We introduce the Spatial Aggregation Block to improve
local detail prediction via a dual-branch residual structure
and the Simam Module to adaptively integrate features
from different blocks, significantly enhancing the model’s
predictive capability.

e Our framework achieves state-of-the-art performance on
benchmark datasets and is rigorously validated through
extensive experiments and ablation studies.

II. RELATED WORKS

In this section, we provide an overview of existing research
on short-term video prediction, spatiotemporal prediction, and
optical flow estimation.

A. Short-term Prediction

Liu et al. [1] proposed the Deep Voxel Flow (DVF) network
to address the problem of video frame synthesis. DVF is
a fully convolutional encoder-decoder network that learns to
synthesize video frames from existing ones using current pixel
flows. DVF introduces a voxel flow layer, extending optical
flow from two to three dimensions, enabling stable learning
of motion for synthesizing or rendering objects, thus providing
a novel approach to video prediction. Subsequently, to achieve
better performance, video prediction methods began leveraging
additional information. Wang et al. [28] proposed a video
synthesis method, Vid2Vid, based on generative adversarial
learning, which learns a mapping function from video input to
output using a generative adversarial framework. By utilizing
a sequence of semantic segmentation masks, Vid2Vid enables
multimodal video synthesis. Pan et al. [29] proposed a video
generation method based on a single semantic label map,
dividing the task into two subtasks: generating an initial frame
using an image generation model and then animating the
frame using the predicted optical flow from a conditional
variational autoencoder (cVAE). Extensive experiments show
that semantic information significantly improves optical flow
prediction and video frame generation. Wu et al. [18] pro-
posed an object motion prediction-based method that separates
dynamic objects from static backgrounds, predicting future
motion paths, scaling, and shapes of dynamic objects to
generate more accurate and realistic future videos.

Bei et al. [30] proposed a Semantic-Aware Dynamic Model
(SADM) that decomposes scene layouts (semantic maps)
and motions (optical flow) into layers, which are predicted
and fused with their context to generate future layouts and
motions. By detecting occlusion areas using predicted se-
mantic maps and synthesizing these regions through content-
aware inpainting, SADM generates more realistic and natural

predicted videos.However, additional inputs like optical flow,
semantic segmentation maps, and instance segmentation maps
are often difficult to accurately obtain or estimate, typically
requiring model training tailored to specific scenarios. When
unrecognized objects appear in the scene, performance often
degrades significantly. Hu et al. [23] proposed the Dynamic
Multi-scale Voxel Flow Network (DMVFEN), which achieves
better prediction performance using only RGB images as
input. The network comprises multiple Multi-scale Voxel Flow
Blocks (MVFBs) constructed with convolutions and stacked
sequentially. However, convolution-based methods rely on
local receptive fields, limiting their ability to capture global
spatial information and performing poorly on tasks requiring
strong global dependencies.

B. Spatiotemporal Prediction

Shi et al. [31] proposed the Convolutional Long Short-Term
Memory (ConvLSTM) network, which extracts spatial features
from images through convolution operations while leveraging
LSTM units to capture temporal dynamics, enabling joint mod-
eling of spatial and temporal features and excelling in sequen-
tial data processing. Lotter et al. [32] developed the recursively
structured PredNet, based on the predictive coding principles
of neurobiology. This network generates predictions layer by
layer, compares them with actual observations to produce error
signals, and feeds the deviations back to subsequent layers to
optimize predictive performance. Villegas et al. [33] designed
a method to decouple motion and content, simplifying the
video prediction task. They used two independent encoding
paths to extract spatiotemporal dynamics and static layouts
separately and combined motion features to transform content
features into the next frame.

However, these methods are generally designed for long-
sequence video prediction and are limited in modeling the de-
tails of high-resolution video frames. Liu et al. [34] proposed
an encoder-decoder architecture based on dynamic atoms.
This method uses sparse optimization to map consecutive
frames into a dynamic feature space and employs a decoder to
reconstruct the input data and predict future frames, effectively
capturing dynamic characteristics of the data. Geng et al. [35]
proposed a “correspondence loss” to reduce blurry results in
video prediction. They aligned predicted images with ground
truth using optical flow and calculated the loss for correspond-
ing pixels, enhancing the model’s focus on object positioning
and significantly reducing prediction blur. Despite significant
progress, these methods still face challenges in high-resolution
video prediction, such as inaccurate frame prediction, reliance
on long-sequence inputs, and high computational resource con-
sumption. Voleti et al. [36] proposed the Masked Conditional
Video Diffusion (MCVD) framework, which delivers an inte-
grated model for video prediction, generation and interpolation
by randomly masking past or future frames and employing a
diffusion-based denoising process. Zhang et al. [37] introduced
ExtDM, which uses a motion autoencoder and a distribution
extrapolation module within a diffusion U-Net to explicitly
predict future feature distributions. This enhances the accuracy
and efficiency of long-range video prediction. Yuan et al.
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[38] presented Spatio-Temporal Non-Autoregressive Model
(STNAM), a model that enables the parallel generation of
all future frames via spatio-temporal attention mechanisms.
This significantly accelerates inference while mitigating error
accumulation.

C. Optical Flow Estimation

Optical flow reflects the temporal motion changes of each
pixel in an image. By estimating optical flow, it is possi-
ble to infer the motion of objects or the camera within a
scene, thereby understanding the motion patterns in the image.
Fischer et al. [39] proposed FlowNet, the first convolutional
neural network-based framework for optical flow estimation.
By introducing correlation layers into the network, it achieved
cross-frame feature matching, significantly improving esti-
mation accuracy. However, its computational efficiency is
relatively low. To address this, Ranjan et al. [40] designed
SPyNet, which processes optical flow estimation in a multi-
scale manner based on a spatial pyramid structure, achieving
both efficiency and accuracy, especially excelling in handling
large motions. Sun et al. [41] further optimized the optical flow
estimation process with PWC-Net. This method constructs
learnable feature pyramids combined with warping operations,
reducing computational redundancy while improving adapt-
ability to large-motion scenarios. Teed et al. [42] proposed
the RAFT framework, which achieves precise optical flow
estimation by constructing multi-scale 4D correlation volumes
and iterative optimization operations, demonstrating excellent
performance on multiple benchmark datasets.

To tackle occlusion issues, Jiang et al. [43] introduced the
Global Motion Aggregation (GMA) module, which effectively
improves the quality of optical flow estimation in occluded
regions by modeling long-range dependencies between pixels
within a frame. Huang et al. [44] designed FlowFormer,
which leverages a Transformer architecture combined with a
cost volume encoder and cost memory decoder. This method
exhibits strong global modeling capabilities and flexibility in
optical flow estimation tasks.

III. PROPOSED METHOD
A. Introduction and Overall Pipeline

To enable video next-frame prediction, we propose a Multi
Scale Hybrid Mamba Voxel Flow framework. As depicted in
Fig. 1, the input frames I,_; € RXwX3 and I, € Rhxwx3
are initially processed at a coarse scale (Scale = 4) by the
Hybrid Mamba Voxel Flow Modules, producing an initial flow
estimation F'* as well as an intermediate predicted frame I} ;.
Subsequently, at finer scales (Scale = 2 and Scale = 1), the
flow and intermediate results are iteratively refined, ultimately
yielding the final high-resolution target frame I, ;. This pro-
gressive approach enables the framework to effectively capture
both coarse global motion and subtle local details, thereby
improving prediction accuracy across multiple spatial scales.
In Fig. 1, the term Planes denotes the number of convolutional
channels within each module (i.e., the channel dimension C
of feature maps. Planes controls the representational capacity
of the convolutional layers at different stages of the network

and thus determines the trade-off between modelling power
and computational cost.

The Hybrid Mamba Voxel Flow Module is composed of
several key components: the Mamba Block, the Spatial Ag-
gregation Block (SA Block), the Simam Module, and feature
downsampling and upsampling. At each spatial scale, the
pipeline repeatedly applies an identical Mamba Block and the
Spatial Aggregation Block to compute an initial flow estimate.
Once the coarse flow at the lowest resolution (4x downsam-
pled) has been predicted, it is upsampled (pixel-shuffled) to
the next finer grid (2x downsampled). This corrected flow
is then upsampled to full resolution and warped against the
highest-resolution features. A final Mamba Block and the
Spatial Aggregation Block pass then refines any remaining
local misalignments. By progressively refining motion esti-
mates from low to high resolutions, each module focuses
on motions at its own scale—coarse modules capture large
displacements efficiently, while finer modules recover detailed
local movements.

In the coarse-scale stage, we first feed the frames [;_
and I; into a downsampling process to reduce their spatial
resolution to one-quarter of the original. Specifically, we
apply bilinear interpolation to obtain optical flow estimation.
Meanwhile, the Hybrid Mamba Voxel Flow Modules produce
an initial flow field F* and an intermediate predicted frame
I 11- Next, we concatenate these four features along the
channel dimension to construct the input tensor X;,,:

Xin = C’oncat(Downsample(It,17 I, Ifﬂ, Fl)>7 (1)

where Concat(-) stacks I,_y1, I, I},,, and F* along the
channel dimension, Downsample(-) adopts bilinear interpo-
lation to generate coarse feature representations. The resulting
combined feature X;, € R"*®*%" simultaneously incorpo-
rates coarse-scale motion (i.e., optical flow) and predictive
information (i.e., frames), enabling subsequent network layers
to refine further both the flow and the predicted results under
a broader receptive field and reduced computational load.
Finally, we feed X;, into both the Mamba Block and the
Spatial Aggregation Block for subsequent feature prediction.
In each Multi-Scale Hybrid Mamba Voxel Flow module a
residual connection is entered to improve the predictive power
of the model.

B. Mamba Block

The Mamba Block integrates convolutional layers, a dual-
branch feature extractor, PatchExpand, LayerNorm, local self-
attention (SS2D), upsampling, and residual fusion into a uni-
fied processing pipeline. This architecture was chosen because
it balances the fine-grained locality of convolution with the
long-range context modeling of self-attention, while residual
fusion ensure efficient resolution restoration and gradient
flow—yielding high predictive accuracy at moderate compu-
tational cost.

First, the input feature X;, passes through two sequential
convolution and activation layers (where GELU is denoted by
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Fig. 1. Overview architecture of proposed Framework.

G), as well as Split (denoted by S) for channel splitting. It
can be expressed by the formula:

X1 =GELU(Conv(X;p))
(X1, Xs2) = Split(Conv(X1)).

where Conv(-) denotes a standard 3 x 3 convolution that
extracts representation.

Next, PatchExpand linearly projects each token’s features
into a higher-dimensional channel space, doubling the channel
capacity. These expanded channels are then rearranged into a
finer spatial grid to restore resolution while preserving feature
coherence. This is followed by a LayerNorm operation to
normalise and balance the resulting feature distributions across
all channels:

Xpateh = PatchExpand(Xs1),
Xnorm = LayerNorm(Xpqicn).

2)

3)

Subsequently, the 2D-Selective-Scan module (SS2D) oper-
ates on X, to learn pixel-level dependencies, producing:

Xattn = SS2D(Xnorm)7
Xsa = CORU(Xattn ©® XpatCh)v

where @ denotes element-wise addition. Meanwhile, the other
branch convolution and upsamples X o to obtain the feature
X, and then concatenates it with X,, along the channel
dimension. This step is followed by a convolution and ReLU
activation, resulting in:

“4)

Xutres = ReLU |Concat(Conv(Xsq), Conv(Xy))|. (5

The final output Xps,.s from Mamba Block provides high-
quality feature representations for subsequent tasks such as
optical flow estimation and frame prediction.

C. Spatial Aggregation Block

The proposed Spatial Aggregation Block effectively en-
riches spatial feature representations while controlling compu-
tational complexity. Unlike traditional structures, this module
organically integrates multiple consecutive convolutions, up-
sampling, and parallel depthwise convolutions, complemented
by both local residual connections. By adaptively balancing
fine local cues with broader contextual information, this mod-
ule significantly improves the representational power of the
network. First, the input feature map is processed by a series
of convolutions:

X1 = Conv(X;n),

Xy = GELU(Conv(Xy1)),
X3 = Conv(Xy)

(6)

To stabilize the inter-channel distribution and expedite con-
vergence, LayerNorm is applied. Additionally, a local residual
connection is introduced to alleviate gradient vanishing and
preserve early-stage information:

Xin = Layer Norm(Xs/),

@)
X = Xin @ Xv/,
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Next, X;, is upsampled to increase its spatial resolution,
and the resulting feature map is then split:

Xup = Upsample(Xlr)a

. ®)
(XSpl’ XSPQ) = Spllt(Xup)v

Subsequently, the feature tensor is split into two logical
branches along the channel dimension and executed sequen-
tially in a single thread. Each branch then performs a depth-
wise convolution:

X = DWConv(Xgpr ),

9
X o = DWConv(Xyy2), ©)

where DW Conu(-) reduces the computational cost by inde-
pendently operating on each channel.

Finally, a convolutional layer and an activation function are
applied to the fused features X+ and X o

X = Concat(X v, X)),

Xsres = ReLU (Conv(X,,)). (10)

This structure efficiently integrates local details and global
semantics via multi-level convolutions, upsampling, and par-
allel depthwise convolutions. The effect of local residual
connections ensures effective gradient propagation and feature
reuse, endowing the module with both high efficiency and
powerful representational capability.

D. Simam Module

The Simam Module processes the concatenated outputs
from the Mamba Block and the Spatial Aggregation (SA)
Block. Specifically, the inputs Xps.es and Xg,.s are first
concatenated along the channel dimension to form the input
tensor Xg;n:

Xs = Concat(Xj\lr657XSres)7 (11)

Next, the concatenated tensor Xg;, is fed into the Pixel
Shuffle layer, which rearranges the feature map by spatially
redistributing pixel information:

Xshuffied = PizelShuf fle(Xs), (12)

The pixel-shuffled features are first rearranged into a higher-
resolution 3D grid and then passed through a learnable 3D-
weight block, which applies element-wise weights across both
spatial and channel dimensions to model their interdepen-
dencies. Specifically, each channel is mean-centered and its
squared deviations are normalized by the spatial variance,
then passed through a sigmoid to produce an attention map,
which is applied element-wise to the original features to
modulate each location according to its learned importance.
The resulting weighted volume is finally refined by a standard
convolutional layer:

Xs3p = 3DW€ight(Xshuffled),

13
Xout = Conv(Xsp), ()

where the 3D weight block adjusts the spatial and channel
dimensions based on the learned weight parameters.

The resulting output X,,; contains the predicted optical
flow field F**+!, which facilitates more accurate frame align-
ment by correcting potential occlusions or large displacements,
while also incorporating information from the next frame.
Finally, X, is passed through the backward warping block,
where spatial transformations are applied to refine the align-
ment and synthesize the final output. The backward warping

yields I;f]", the predicted frame at time ¢ + 1.

E. Loss Function

The loss function consists of the Laplacian Loss (L;4p) and
Perceptual Loss (L), with the total loss being the weighted
sum of these two terms. The loss is defined as:

Ltota,l = OéLlap + BLperca (14)
1 & o
Liap = 35 27" AT, Tes), (15)
=1
k . 2
Lyere = Y_||Fillie) = Filesn)|[ . 16)

i=1
Where o and [ represent the weights of the losses, we
set them to 1 and 0.5, respectively, to balance structural
similarity and visual quality. d denotes the ¢; loss applied
to the Laplacian pyramid representations derived from each
pair of images. fti 11 refers to the predicted frame output by
the i-th optical flow block, while I;; represents the ground
truth frame at time ¢ + 1. The perceptual loss is computed
between the predicted frame I, ; from the output of the
final block and the ground truth. K represents the number
of selected convolutional layers, set to 5, and F; denotes the
feature representation of the ¢-th selected layer.

IV. EXPERIMENTS
A. Dataset

Cityscapes [25] is a comprehensive dataset containing im-
ages of urban street scenes collected from 50 cities, designed
to simulate diverse scenarios encountered in real-world au-
tonomous driving tasks. The dataset captures a wide range
of variations in weather conditions, time of day, seasons,
and urban environments. These attributes make it a valuable
resource for developing and evaluating algorithms intended for
challenging autonomous driving scenarios. Cityscapes consists
of 3,475 high-definition videos, each with a resolution of
2048x1024. Among these, 2,975 videos are allocated for
training, while the remaining 500 are reserved for testing.

KITTI [26] serves as one of the most widely recog-
nized benchmarks for assessing computer vision algorithms
in autonomous driving contexts. This dataset was captured
using high-resolution color and grayscale cameras mounted
on vehicles, covering a diverse set of environments such as
urban areas, rural roads, and highways. Each image in the
dataset contains up to 15 vehicles and 30 pedestrians, offering
a rich environment for motion prediction algorithms. The
dataset comprises 28 driving videos, each with a resolution
of 1242x375. Of these, 24 videos are designated for training,
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TABLE I
QUANTITATIVE RESULTS OF DIFFERENT METHODS ON THE CITYSCAPES, AND KITTI DATASETS. “RGB”, “F”, “S” AND “I” DENOTE THE VIDEO
FRAMES, OPTICAL FLOW, SEMANTIC MAP, AND INSTANCE MAP, RESPECTIVELY. “N/A” MEANS NOT AVAILABLE.
Cityscapes KITTI
Method Input ) 5 ) 5
MS-SSIM(x 10~ )7 LPIPS(x10—4)) MS-SSIM(x 10~ )7 LPIPS(x10™4)|

t+1 t+3 t+5 t+1 t+3 t+5 t+1 t+3 t+5 t+1 t+3 t+5
Vid2vid [28] RGB+S 88.16  80.55 75.13 1058 1592 20.14 N/A N/A N/A N/A N/A N/A
Seg2vid [4] RGB+S 88.32 N/A 61.63 9.69 N/A 25.99 N/A N/A N/A N/A N/A N/A
FVS [18] RGB+S+I 89.10 81.13  75.68 8.50 1298 16.50 79.28 67.65 60.77 18.48 24.61 30.49
SADM [14] RGB+S+F  95.99 N/A 83.51 7.67 N/A 1493 83.06 72.44 64.72 1441 2458 31.16
PreNet [16] RGB 84.03 79.25 7521 2599 2999 36.03 56.26 5147 4756 5535 58.66 62.95
MCNET [45] RGB 89.69 78.07 70.58 18.88 31.34 37.34 7535 63.52 5548 2405 31.71 37.39
DVF [1] RGB 83.85 7623 71.11 17.37 2405 28.79 5393 4699 42.62 3247 3743 4159
CorrWise [35] RGB 92.80 N/A 83.90 8.50 N/A 15.00  82.00 N/A 66.70  17.20 N/A 25.90
OPT [22] RGB 94.54  86.89  80.40 6.46 1250 17.83 8271 6950 61.09 1234 2029 26.35
DMVEN [46] RGB 95.73 89.24 8345 5.58 1047 1482 8853 78.01 70.52 10.74 19.27 26.05
MHMYVF RGB 96.43 90.10 84.14 4.68 8.95 1298 89.51 79.12 71.71 9.46 16.67 22.57

GT

FVS

OPT

OURS

t+1 t+3 t+5

Fig. 2. Prediction comparison on the Cityscapes dataset.

and 4 are reserved for testing, ensuring a clear separation for
evaluation purposes.

UCF101 [27] is a widely-used action recognition dataset
comprising realistic action videos collected from YouTube,
spanning 101 distinct action categories. The dataset consists
of 13,320 videos across 101 action categories, offering the
largest diversity in terms of actions and presenting significant
challenges for action prediction tasks. These challenges arise
from large variations in camera motion, object appearance
and pose, object scale, viewpoint, cluttered backgrounds, and
illumination conditions. As a result, UCF101 remains one of
the most challenging datasets for action prediction research,
providing an invaluable resource for advancing the field. In
this work, we used the first subset for training and evaluation.

t+5

t+3

To ensure compatibility with prior studies and maintain
consistency in experimental settings, we follow the resizing
strategy adopted in FVS [18]. Video frames were sampled at
25 FPS following standard practice. Specifically, the images in
the Cityscapes dataset are resized to 1024 x512, while those in
the KITTI dataset are resized to 832x256 and UCF101 dataset
are resized to 256x256. This resizing facilitates efficient
computation and ensures fair comparisons with existing meth-
ods, especially when evaluating performance across various
benchmarks.

B. Implementation

The AdamW optimizer [47] was employed with a weight
decay parameter of 1072, To regulate the learning rate, a
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FVS

OPT

DMVFEN

GT

t+1 t+3

Fig. 3. Prediction comparison on the KITTI dataset.

TABLE II
QUANTITATIVE RESULTS OF DIFFERENT METHODS ON THE UCF101

DATASETS.

UCF101

Method MS-SSIM(x 10~ 2)1 LPIPS(x10~2)]
t+1 t+3 t+5 t+1 t+3 t+5
DYAN 92.37 8724 83.53 6.25 8.84 10.83
OPT 94.70  88.08 84.54 5.62 10.03 12.64
DMVEN 9445 90.41 86.98  7.21 11.16 14.16
MHMVF 9491 90.84 87.30 5.39 8.70 11.35

combination of linear warm-up and cosine annealing schedules
was adopted, gradually adjusting it from 10~* down to 1075,
A batch size of 32 was used throughout the experiments.
To increase data variability, input images were first randomly
cropped to dimensions of 224 x 224 and then augmented using
random rotations, alongside horizontal and vertical flipping
techniques. The proposed method was trained for 300 epochs
on all datasets. The implementation was carried out using the
PyTorch framework, running on an Ubuntu 20.04 system, with
both model training and evaluation executed on four NVIDIA
A100 GPUs.

V. EXPERIMENTAL ANALYSIS
A. Results on the Cityscapes and KITTI datasets

The quantitative performance of our proposed Multi-Scale
Hybrid Mamba Voxel Flow (MHMVF) framework, compared
with various state-of-the-art methods, is presented in Table I
on the Cityscapes and KITTI datasets. The compared methods
are divided into two categories: those that rely solely on
RGB images as input and those that utilize supplementary
information such as semantic or instance maps. To evaluate
model performance, we use multi-scale structural similarity

t+5 el t+3 t+5

Fig. 4. Prediction comparison on the UCF101 dataset.

(MS-SSIM) [48] and learned perceptual image patch similarity
(LPIPS) [49]. Higher MS-SSIM scores and lower LPIPS
values indicate better visual quality and perceptual consistency.

On the Cityscapes dataset, MHMVF achieves the best MS-
SSIM scores across all evaluated time steps, recording 96.43 at
t+1, 90.10 at t + 3, and 84.14 at t 4 5. These results surpass
those of DMVEN and semantic-guided SADM. In terms of
LPIPS, MHMVF demonstrates its superiority with scores of
4.68, 8.95, and 12.98 at t+1, t+ 3, and t+5, respectively, sig-
nificantly outperforming DMVEN. These results demonstrate
that the multi-scale hybrid architecture of MHMVEF, anchored
by the global self-attention of the Mamba block and the
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spatially adaptive local refinement of the Spatial Aggregation
block, consistently preserves structure and enhances perceptual
fidelity over long horizons. Specifically, at the coarsest scale,
the Mamba block aggregates motion cues across the entire
frame, capturing large displacements and global context with
minimal overhead. At an intermediate scale, it blends these
global flows with finer details. At the finest scale, the Spatial
Aggregation block selectively emphasises salient edges and
textures while suppressing artefacts. This progressive refine-
ment strategy ensures that MS-SSIM remains high and LPIPS
remains low, even at t+5, enabling the framework to robustly
handle complex motion patterns, from rapid camera pans to
subtle object deformations, in diverse urban scenes. On the
KITTI dataset, MHMVF similarly outperforms all baseline
methods. It achieves MS-SSIM scores of 89.51 at t+ 1, 79.12
at t + 3, and 71.71 at t 4+ 5, surpassing DMVFN and OPT.
MHMVF also achieves the lowest LPIPS values of 9.46, 16.67,
and 22.57 at t+1, t+ 3, and t+ 5, demonstrating a significant
improvement over DMVFEN. In the KITTI scenes, which are
characterised by rapid vehicle motion and varied lighting,
MHMVF’s coarse Mamba block first captures broad ego-
motion and object displacements. Then, the fine-scale Spatial
Aggregation block sharpens lane markings, car edges and
pedestrian contours. This hierarchical refinement maintains
high structural fidelity and suppresses blur at all time horizons,
demonstrating robust temporal coherence under challenging
real-world dynamics.

The comparative visualization results between our method
and existing state-of-the-art approaches are presented in Fig.
2 and Fig. 3. For the Cityscapes dataset (Fig. 2), we selected
two representative scenes containing both near-field and far-
field variations. Yellow bounding boxes highlight regions
prone to motion blur and distortion due to camera movement,
with arrows pinpointing actual artifacts. As shown in Fig.
2, previous state-of-the-art methods are prone to deformation
when predicting the rear side of the car on the left and
the Mercedes-Benz logo. Our proposed Mamba Block can
effectively solve the problem of difficult prediction of fast
moving objects through global sensing field and significantly
improve the accuracy of prediction.

The right side of Fig. 2 reveals magnified views of distant
traffic signs and poles, where comparative methods (FVS,
OPT, DMVFN) manifest varying degrees of warping and
motion blur artifacts. In contrast, our model achieves superior
shape preservation for distant objects with enhanced geometric
accuracy. In the evaluation of the KITTI dataset (Fig. 3), we
focused on dynamic scenes featuring high-speed vehicles and
low-speed pedestrians to assess motion modeling capabilities.
To facilitate detailed comparison, key areas are visualized
using yellow bounding boxes and local magnification. Specif-
ically, previous advanced methods exhibit noticeable motion
artifacts in the vehicle contours and pose distortion in the
rider’s limb region. By modeling global information, our
approach reliably maintains dynamic consistency for targets
exhibiting diverse motion velocities.

In conclusion, the experiments confirm that MHMVF
outperforms existing methods consistently across both the
Cityscapes and KITTI benchmarks. It achieves an optimal

TABLE III
QUANTITATIVE RESULTS OF DIFFERENT METHODS ON THE CITYSCAPES
DATASETS.

MS-SSIM(x10~2)1 LPIPS(x10~2)]

METHOD
t+1 t+3 t+5 t+1 t+3 t+5
w/o SM 96.13 89.65 83.71 5.14 9.69 13.92
w/o MB 95.96 89.29 8321 5.03 9.49 13.63
w/o SAB 90.21 8199 7564 887 1559 21.00
MHMVF 9643 90.10 84.14 4.68 8.95 12.98

balance between spatial fidelity and temporal consistency.
MHMVF delivers superior frame quality and robust long-
term prediction accuracy by combining coarse-to-fine progres-
sive refinement with the complementary strengths of Mamba
Blocks for global motion modelling, Spatial Aggregation
Blocks for local detail preservation and SimAM Modules for
adaptive feature weighting.

B. Results on the UCF101 Dataset

Table II summarizes the performance of the proposed
MHMVF method in comparison to three state-of-the-art ap-
proaches (DYAN [12], OPT [22], and DMVEN [46]) on the
UCF101 dataset. MHMVF achieves the highest MS-SSIM
scores across all prediction horizons (¢ + 1, ¢ + 3, and
t + 5), with values of 94.91, 90.84, and 87.30, respectively.
In terms of perceptual qualityy, MHMVF also demonstrates
superior LPIPS performance. At ¢ + 1 and ¢ + 3, MHMVF
achieves the lowest scores (5.39 and 8.70), outperforming all
competing methods. For ¢t + 5, MHMVF obtains a score of
11.35, which is lower than OPT (12.64) and DMVEN (14.16)
and comparable to DYAN’s 10.83. These outcomes highlight
how our progressive refinement framework — stacking multi-
scale Hybrid Mamba Voxel Flow modules that combine global
self-attention in the Mamba Block with local convolutional
enhancement in the Spatial Aggregation Block and adaptive
fusion by the SimAM module — robustly preserves both broad
motion patterns and fine structural details, even over long-term
prediction horizons. Fig. 4 presents a qualitative comparison
on the UCF101 dataset, focusing specifically on hand joint
movements. Our framework accurately reconstructs intricate
hand motions, delivering sharper, more detailed predictions of
finger articulations than DMVFN. Notably, MHMVF markedly
reduces blurring and exhibits no visible distortions, demon-
strating its superior ability to capture fine-grained dynamics.

Overall, the results on the UCF101 dataset demonstrate
that MHMVF effectively addresses both structural and per-
ceptual challenges in video prediction, achieving state-of-the-
art performance across multiple time steps. The balanced
improvements in MS-SSIM and LPIPS scores validate the
effectiveness of our progressive multi-scale flow estimation
and refinement strategy.

C. Ablation analysis and discussion

Table III provides quantitative results for the ablation study
on the Cityscapes dataset, analyzing the contributions of
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the Simam Module (SM), Mamba Block (MB), and Spatial
Aggregation Block (SAB) within the MHMVF framework.
Removing the Simam Module (w/o SM) results in a slight
decrease in MS-SSIM, dropping from 96.43 to 96.13 at t + 1
, LPIPS scores increase from 4.68 to 5.14 at ¢ + 1. Excluding
the Mamba Block (w/o MB) similarly impacts performance,
reducing MS-SSIM to 95.96 at t 4 1 and 89.29 at t 4 3, while
LPIPS values rise slightly, highlighting the importance of MB
in capturing global motion through local self-attention. The
absence of the Spatial Aggregation Block (w/o SAB) leads to
the most significant performance drop, particularly at ¢ 4 5,
where MS-SSIM falls sharply to 75.64, and LPIPS increases
dramatically to 21.0. These results demonstrate SAB’s critical
role in adaptively integrating features to maintain structural
fidelity and perceptual quality

In contrast, the complete MHMVF framework achieves the
best overall performance, with MS-SSIM scores of 96.43,
90.10, and 84.14 at t + 1, t + 3, and t + 5, respectively,
and LPIPS values of 4.68, 8.95, and 12.98. By synergistically
leveraging the SimAM Module’s adaptive feature weighting,
the Mamba Block’s global self-attention, and the Spatial
Aggregation Block’s localized fusion within our coarse-to-fine
progressive pipeline, MHMVF consistently delivers superior
MS-SSIM and LPIPS improvements across both short- and
long-term horizons, demonstrating state-of-the-art predictive
accuracy and perceptual fidelity.

As shown in Table IV, we conduct an ablation study on the
Cityscapes dataset to investigate the role of the hyperparame-
ters a and /3 in balancing short-term and long-term prediction
performance. When o = 0, the results clearly deteriorate for
both MS-SSIM and LPIPS, demonstrating that relying solely
on the branch governed by £ is insufficient for capturing multi-
scale motion information. Likewise, setting 5 = 0 provides
only a small gain in MS-SSIM at ¢+ 1 but suffers from higher
LPIPS values at ¢ 4+ 3 and ¢ + 5, indicating that the absence
of the (-controlled branch compromises perceptual quality.
By contrast, both o = 1,5 = 0.5 and o = 1,8 = 1 yield
notably better performance across all metrics; specifically,
while o = 1,8 = 0.5 excels with a lower LPIPS at ¢t + 1,
a =1, =1 shows a marginal edge at ¢t + 5. These findings
suggest that an appropriate combination of o and 3 effectively
captures global motion while also leveraging spatial detail
compensation, thereby producing clearer and more structurally
coherent predictions. Overall, we recommend v = 1,3 = 0.5
for a good trade-off between accuracy and perceptual quality.

Table V reports the latency and predictive accuracy of
different video prediction methods evaluated on the Cityscapes
dataset. Specifically, we compare the peak signal-to-noise ratio
(PSNR) and the structural similarity index measure (SSIM) at
future frames t + 1, t + 3 and t + 5, as well as the inference
latency per frame in milliseconds (ms). As shown in the table
V, our proposed method achieves the best performance in
terms of both PSNR and SSIM across all prediction horizons.
At frame t+1, our method achieves a PSNR of 30.52 and
an SSIM of 90.93, outperforming both the DMVEN method
and the MCVD method. This advantage persists at longer
horizons, where it maintains relatively stable performance,
demonstrating superior temporal consistency and robustness.

TABLE IV
RESULTS FOR DIFFERENT PROPORTIONS OF THE HYPERPARAMETERS « , 3
ON THE CITYSCAPES DATASET.

MS-SSIM(x10~2)1 LPIPS(x10—2)]

@ t+1 t+3 t+5 t+1 t+3 t+5
1 0 96.51 90.65 8521 651 1235 17.35
1 0.5 9643 90.10 84.14 4.68 8.95 12.98
1 1 96.24 8998 84.12 4.76 8.96 12.83
0.5 1 96.15 89.73 83.89 4.79 9.05 12.98
0 1 9466 87.16 80.78 559 10.51 15.07

In addition to accuracy, our method is highly efficient,
achieving a latency of only 60 ms per frame. This is markedly
lower than the 327 ms latency incurred by MCVD and
significantly lower than the 181 ms latency incurred by SimVP.
Although DMVEFEN achieves the lowest latency (54 ms), our
method offers a better balance between accuracy and speed,
with substantial improvements in both PSNR and SSIM.
These results clearly demonstrate the effectiveness of our
architectural design in achieving high-quality predictions with
low computational overhead, making our method a practical
choice for real-time video prediction tasks.

TABLE V
LATENCY ANALYSIS OF DIFFERENT METHODS ON THE CITYSCAPES
DATASET.
PSNRT SSIM(x10~2)t
METHOD Latency[ms]
t+1 t+3 t+5 t+1 t+3 t+5
SimVP 22.24 1932 18.1 81.3 73.83  71.31 181
STNAM 22.38  18.28 16.37 8275 72.85 68.94 201
MCVD 2585 2413 2244 86.66 75.14 6793 327
DMVEN 29.57 2622 2434 8955 8141 76.54 54
MHMVF  30.52 2697 2495 9093 82.69 7747 60

VI. CONCLUSION

In this paper, we introduced a novel multi-scale Hybrid
Mamba Voxel Flow framework designed to address the chal-
lenges of blurry predictions and structural inconsistencies in
video prediction tasks. By employing a progressive refinement
strategy, our framework effectively models complex multi-
scale motion between adjacent frames. The proposed Mamba
Block leverages local self-attention to capture global motion
information, while the Spatial Aggregation Block improves
local detail prediction using a dual-branch residual structure.
Additionally, the Simam Module adaptively integrates features
from these blocks, significantly enhancing the overall pre-
dictive capability of the model. Experiments on Cityscapes,
KITTI, and UCF101 datasets demonstrate that our method out-
performs state-of-the-art techniques. Ablation studies further
validate the effectiveness of each component in handling real-
world complexities.By addressing challenges such as motion
estimation and structural continuity, our framework contributes
to the advancement of video prediction and its broader prac-
tical applications.
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