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Optical coherence tomography angiography
integrating differential phase and intensity images
for in vivo imaging of a mouse retina
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Optical coherence tomography angiography (OCTA) suffers
from more motion artifacts compared to optical coherence
tomography, which are the primary source of image qual-
ity degradation in in vivo imaging. We propose an OCTA
algorithm in this Letter that differs from motion compen-
sation methods widely employed to reduce motion artifacts
and effectively mitigates these artifacts. The algorithm inte-
grates differential phase and intensity images based on the
standard deviation of the flow signals. The performance of
this algorithm is evaluated on mouse retina in vivo imag-
ing. Compared to three conventional OCTA algorithms, the
OCTA images obtained by the proposed algorithm exhibit
fewer motion artifacts and less noise in tissue regions, with
maximum improvements of 1.38 dB and 0.82 in signal-to-
noise ratio and contrast-to-noise ratio (CNR), respectively,
in the maximum projection of en face images. © 2025
Optica Publishing Group. All rights, including for text and data mining
(TDM), Artificial Intelligence (Al) training, and similar technologies,
are reserved.
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Optical coherence tomography (OCT) is a noninvasive, three-
dimensional imaging technique with micrometer resolution and
has been widely used in the diagnosis of retinal diseases [1,2].
Optical coherence tomography angiography (OCTA) is a func-
tional extension of OCT, developed to extract intrinsic blood
flow signals within the microvasculature [3,4]. OCTA acquires
microvascular images by detecting the change in signals induced
by blood cell movement. To extract blood flow signals, various
OCTA algorithms have been proposed. For example, speckle
variance OCT (SVOCT) [5,6], phase variance OCT (PVOCT)
[7,8], and optical microangiography (OMAG) [9,10] are widely
used in in vivo microvasculature imaging, which are based on
intensity, phase, and complex signals, respectively.

Since OCTA requires multiple scans at the same position, one
of the major challenges in in vivo imaging is the motion arti-
facts caused by bulk motion phase shifts induced by breathing
and heartbeats [11]. To reduce motion artifacts, various solu-
tions have been proposed, such as algorithms combined with
hardware design [12], motion compensation methods [13—15],
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etc. The former can achieve more effective artifact suppression,
while the need for hardware improvement may limit its applica-
tion to certain OCT devices. There are two motion compensation
methods that have been widely used to suppress motion artifacts.
One method computes the motion-compensated phase by aver-
aging phase shifts based on the A-line signal [14], while the
other utilizes a velocity histogram along an A-line to calculate
the compensated phase [15]. Wei et al. propose a bulk motion
compensation method based on the standard deviation (STD) of
phase-based OCTA and Doppler OCT flow signals to further
enhance the accuracy of motion compensation and reduce com-
putational load [16]. However, motion compensation methods
need to calculate the bulk motion shift, which requires addi-
tional computations, and the effectiveness of motion artifact
suppression depends on the estimation accuracy of the motion
shift. Compared to motion compensation methods, enhancing
the motion artifact suppression capability of OCTA algorithms
may provide a superior solution.

In this Letter, we propose an OCTA algorithm that integrates
differential phase and intensity standard deviation (DPISTD)
of the flow signals. We found that calculating the standard
deviation of the differential images can suppress motion arti-
facts and reduce noise in tissue regions. Then, integrating the
standard deviation images of the differential phase and differen-
tial intensity images can further improve the quality of images.
Effective motion artifact suppression was achieved without com-
plex motion compensation calculations. To comprehensively
investigate and present our algorithm, we compared our algo-
rithm with three algorithms that utilize different forms of blood
flow signals and are widely used in OCTA retinal imaging:
SVOCT (intensity-based), PVOCT (phase-based), and OMAG
(complex-based).

We performed in vivo imaging of a mouse retina using the
OCT system previously established in the laboratory [17]. The
system operated at 100 kHz A-line rate. The measured axial
resolution was 2.3 pum, and the lateral resolution was estimated
to be 10.9 um. The exposure time was 9.2 us. A raster scanning
was used to acquire three-dimensional (3D) images centered at
the optic disk. Each B-scan contained 400 A-lines. The B-scan
was repeated five times for each slow scanning position, for a
total of 512 positions and 2560 B-scans. The fast scanning was
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performed in a sawtooth pattern, and its return time was set to 1/4
of the B-scan time. The experimental procedure was approved
by the Institutional Animal Care and Use Committee (IACUC)
of Shandong University.

We perform the OCT image reconstruction, including k-space
interpolation, compensation for dispersion mismatch, and the
fast Fourier transform [18]. Then, the complex dataset C,,_,, is
obtained. x is the pixel coordinate in the fast scanning direction,
y is the pixel coordinate in the slow scanning direction, z is the
pixel coordinate in the depth direction of the image, and m is
the time sequence of the B-scan acquired at the same scanning
position.

The magnitudes of adjacent frames at the same scanning posi-
tion are calculated, and the differential intensity (DI) image is
obtained by differential operation between adjacent magnitudes
of the complex data:

Dlx,z,m = |Cx,z.m+1| - |Cx,z.m| s (1)

where || is the absolute value of the complex data.

The differential phase image (DP image) is obtained as shown
below:
Im (C\‘.z.mﬂ - Cy )

DP .. = tan™' —
. Re (Cx,.z,mH . C:zm)

X,2

, (2

where * denotes the conjugate of complex data. Then, the stan-
dard deviations of the DI images and the DP images derived from
B-scans at the same scanning position are calculated separately
(when M > 3):
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where M is the number of repeated B-scans at the same scan-
ning position. When M = 2, there is no meaningful standard
deviation. IV, , and PV, can be obtained by

I‘/,\',y,z = DI.x.z,ma (5)

P‘/x,):,z = DPx,z.m' (6)

Finally, the DPISTD image can be obtained by calculating the
square root of the product of the standard deviations derived
from DP images and DI images:

DPIW,Z = PVXV)'.Z : IVXQ‘,Z' (7)
The proposed algorithm is compared with SVOCT [5], PVOCT
[7], and OMAG [9]. To reduce the motion artifacts, the global
phase fluctuations were corrected by removing axial and lateral
global phase fluctuations [11] in the phase-involved algorithms,
DPISTD, PVOCT, and OMAG. Additionally, a threshold mask
based on the averaged intensity image was multiplied by the
phase difference images in DPISTD and PVOCT, to suppress
random phase noise and improve blood vessel visualization
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[7,19]. The threshold mask M., can be obtained by
Mx,z,m = |(Cx,z,m+1| + |Cx,z,m|)/2' (8)

The SNR [20,21] and contrast-to-noise ratio (CNR) [15,22] of
OCTA images are calculated, which can be expressed as follows:

I ynamic
SNR = 20 log ~22 (9)
O static
j lynamic jsa ic
CNR = “amic _ static (10)
O static

where Tdym,m,-L. and I, are the mean values of dynamic flow
signals and static tissue signals, respectively, and o7, is the
standard deviation of the static tissue signals.

To ensure a fair visual comparison, the dynamic range of
images was adjusted so that the same colormap can be used.
The normalized image 7,,,maiizaion €an be obtained by

Drmacaion = ~—22, (11)
O-X
where x is the pixel value of the image, y, is the mean value,
and o, is the standard deviation of the pixels.

The OCTA en face images are binarized based on the thresh-
old method to extract regions of blood vessels and tissues for
the calculation of SNR and CNR. The threshold was calculated
based on the Otsu method and then manually adjusted so that
the vascular mask contained the vascular region as much as pos-
sible. To more effectively compare the ability of algorithms to
visualize microvessels, the regions of large vessels were man-
ually selected and subtracted from the blood vessel mask. The
same masks were used for the calculation of SNR and CNR in
all algorithms to ensure fairness and validity of the comparison.

The maximum projection images and the mean projection
images obtained by the four algorithms are shown in Fig. 1. From
Figs. 1(a)-1(d) and Figs. 1(e)-1(h), it can be observed that the
mean projection images exhibit more motion artifacts and noise
compared to the maximum projection images. But the mean
projection images have higher SNR and lower CNR compared to
the maximum projection images (Table 1). This may indicate that
CNR is more suitable than SNR for the comparison of images
acquired by different projection methods. Under the condition
of using the same projection method, our algorithm achieves
the highest values of both SNR and CNR. The motion artifacts
induced by breathing (the white vertical lines marked by the
arrows in Fig. 1(e)) are clearly evident in the SVOCT images, as
this algorithm relies solely on the intensity information. Motion
artifacts caused by heartbeats (the white vertical lines marked
by the arrows in Fig. 1(f)) are even more pronounced in the
PVOCT images. This is because PVOCT uses phase information
to extract dynamic blood flow signals, which makes it more
sensitive to phase shifts induced by the heartbeat. In contrast,
OMAG, which is complex-based, has fewer motion artifacts than
SVOCT and PVOCT. However, significant heartbeat-induced
motion artifacts remain still present in the region near and above
the optic nerve head (Fig. 1(g)). As shown in Fig. 1, SVOCT
(intensity-based) can better suppress motion artifacts caused by
breathing, and PVOCT (phase-based) can better reduce motion
artifacts induced by heartbeats. By fusing intensity-based and
phase-based OCTA and calculating the standard deviation of
the differential images, motion artifacts induced by breathing
and heartbeat are more effectively suppressed in the maximum
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Fig. 1. OCTA en face images of the mouse retina. The first row
shows the mean projection of OCTA en face images obtained by
SVOCT, PVOCT, OMAG, and DPISTD, respectively. The second
row shows the maximum projection images obtained by four algo-
rithms. The third, fourth, and fifth rows show the enlarged images
corresponding to the yellow, green, and blue boxes in (e)-(h),
respectively. Scale bar = 100 um.

Table 1. SNR and CNR of Maximum Projection Images
and Mean Projection Images Obtained by the Four Algo-
rithms

Maximum Projection Mean Projection

Algorithm — o\p dB) CNR SNR@dB)  CNR
SVOCT 15.23 2.34 16.29 1.60
PVOCT 15.28 2.40 15.40 1.85
OMAG 17.35 3.58 18.42 2.50
DPISTD 18.73 4.40 19.28 2.93

projection image of the DPISTD (Fig. 1(h)). As shown in the
enlarged images (Figs. 1(i)—1(t)), the image obtained by DPISTD
has fewer motion artifacts and less noise in the tissue regions.

To more fully compare the performance of the four algorithms,
retinal data was post-processed and layered to obtain three lam-
inar vascular/capillary plexuses, the superficial vascular plexus
(SVP), intermediate capillary plexus (ICP), and deep capillary
plexus (DCP) [23], as shown in Fig. 2.

The vascular signal region used for calculating the SNR and
CNR of SVP images included the large vessel region. In contrast,
for the calculation of the SNR and CNR of ICP and DCP images,
the vascular signal region is selected to exclude the large vessel
region. The results of SNR and CNR are presented in Table 2.
The SNR and CNR of all vascular plexuses images obtained
by DPISTD are at the highest values. Compared to the second-
ranked OMAG, the SNR of the SVP image obtained by DPISTD
is improved by 2.31 dB, and the CNR is increased by 3.02
in the maximum projection images. As shown in Fig. 2, the
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Fig. 2. Maximum projection images of three different retinal
slabs obtained by different algorithms. The first row shows SVP,
the second row shows ICP, and the third row shows DCP, obtained
by SVOCT, PVOCT, OMAG, and DPISTD, respectively. In the
regions marked by color boxes, motion artifacts and noise (marked
by arrows) are reduced in the DPISTD images, which are notice-
able and more in the images obtained by other algorithms. Scale
bar =100 pm.

Table 2. SNR and CNR of Three Different Retinal Slabs
Obtained by the Four Algorithms

Maximum Projection Mean Projection

Retinal Slabs Algorithm

SNR(dB) CNR SNR(dB) CNR

SVOCT 19.48 6.66 19.69 6.28

SVP PVOCT 18.71 6.10 18.49 5.69
OMAG 20.97 8.11 21.56 8.15

DPISTD 23.28 11.13 23.23 10.33

SVOCT 17.18 3.51 17.07 3.07

ICP PVOCT 16.00 3.26 15.57 297
OMAG 19.42 5.18 19.03 4.34

DPISTD 20.15 5.80 19.66 4.89

SVOCT 18.25 4.19 18.00 3.10

DCP PVOCT 17.43 3.87 16.72 3.12
OMAG 20.32 5.99 19.83 4.30

DPISTD 20.57 6.24 20.01 4.57

vascular plexus images obtained by the DPISTD have fewer
motion artifacts and less tissue noise, which are noticeable in
SVP and DCP images.

The number of repeated frames is a critical parameter in
OCTA [18]. Therefore, the OCTA images and their SNR and
CNR, obtained by each algorithm at different numbers of frames,
are compared and analyzed, as shown in Fig. 3 and Fig. 4.
Although the SNR of DPISTD is comparable to that of SVOCT
when the number of repeated frames is two, the CNR of DPISTD
is significantly higher than that of SVOCT. This indicates that the
structural contrast of the DPISTD images is superior. When the
number of repeated frames is 3, 4, and 5, the SNR and CNR of
the maximum projection images and the mean projection images
obtained by DPISTD are all at the highest and show a significant
improvement compared to the second-ranked algorithm.

In order to better show the advantages of DPISTD, we only
show the maximum projection images obtained by DPISTD and
OMAG (the second-ranked algorithm) in Fig. 4. As shown in
Fig. 4, the OCTA images obtained by OMAG have more motion
artifacts (marked by arrows) compared to DPISTD when the
number of frames is 2, 3, 4, and 5. When M = 5, there are
still many motion artifacts in Fig. 4(n). The motion artifacts
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Fig. 3. SNR and CNR of the maximum projection images and
mean projection images obtained by the four algorithms as the
number of repeated frames is increased. (a) and (b) are the SNR of
maximum projection images and mean projection images obtained
by different algorithms, respectively. (c) and (d) are the CNR of
maximum projection images and mean projection images.
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Fig. 4. Maximum projection images obtained by the DPISTD and
OMAG for different numbers of repeated frames. Scale bar = 100

pm.

and noise in the DPISTD images are gradually reduced as the
number of frames increases. The contrast of the capillaries in
DPISTD images is improved significantly, as shown in Figs. 4(c)
and 4(0).

When M =2, OCTA images (Figs. 4(c) and 4(d)) were
obtained using Eqgs. (5) and (6) without calculating the stan-
dard deviation. When M = 3, two differential images can be
obtained, and then the standard deviation of these two images
was calculated to obtain the OCTA images (Figs. 4(g) and 4(h)).
Compared to Fig. 4(c), motion artifacts are significantly reduced
in Fig. 4(g). When the number of frames continues to increase,
the suppression of motion artifacts is no longer so obvious. This
can account for the motion artifact suppression effect of the
calculation of the standard deviation. This may be attributed
to the rhythmic and regular nature of the mouse’s breathing
and heartbeat, which results in their movements being approxi-
mately linear or uniformly variable [11], and the motion artifact
signals also vary approximately uniformly compared to the ran-
dom blood flow signal. Therefore, the differential signals of
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motion artifacts between adjacent images are similar, and their
standard deviation is small. In contrast, blood flow signals vary
randomly, leading to a large standard deviation in their differ-
ential signals. As a result, the signals in the static tissue region
are suppressed, and the blood flow signals are enhanced, thus
improving the performance of the angiography algorithm.

In this Letter, we propose an OCTA algorithm that integrates
differential phase and intensity images based on the STD of the
flow signals. The performance of the algorithm is demonstrated
on OCTA in vivo imaging of the mouse retina. Quantitative
and qualitative analyzes are performed, comparing the pro-
posed algorithm with three other algorithms: SVOCT, PVOCT,
and OMAG. The different laminar vascular/capillary plexuses
and the OCTA en face images at different numbers of repeated
frames are compared and analyzed. The results demonstrate that
the proposed algorithm can more effectively suppress motion
artifacts and has less noise in the tissue regions.
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